题目描述
给你一个整数数组 citations
,其中 citations[i]
表示研究者的第 i
篇论文被引用的次数。计算并返回该研究者的 h
指数。
根据维基百科上 h 指数的定义:h
代表“高引用次数” ,一名科研人员的 h
指数 是指他(她)至少发表了 h
篇论文,并且 至少 有 h
篇论文被引用次数大于等于 h
。如果 h
有多种可能的值,h
指数 是其中最大的那个。
示例 1:
输入:citations = [3,0,6,1,5]
输出:3
解释:给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 3, 0, 6, 1, 5 次。
由于研究者有 3 篇论文每篇 至少 被引用了 3 次,其余两篇论文每篇被引用 不多于 3 次,所以她的 h 指数是 3。
示例 2:
输入:citations = [1,3,1]
输出:1
提示:
n == citations.length
1 <= n <= 5000
0 <= citations[i] <= 1000
解法
方法一:排序
我们可以先对数组 citations
按照元素值从大到小进行排序。然后我们从大到小枚举 $h$ 值,如果某个 $h$ 值满足 $citations[h-1] \geq h$,则说明有至少 $h$ 篇论文分别被引用了至少 $h$ 次,直接返回 $h$ 即可。如果没有找到这样的 $h$ 值,说明所有的论文都没有被引用,返回 $0$。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组 citations
的长度。
方法二:计数 + 求和
我们可以使用一个长度为 $n+1$ 的数组 $cnt$,其中 $cnt[i]$ 表示引用次数为 $i$ 的论文的篇数。我们遍历数组 citations
,将引用次数大于 $n$ 的论文都当作引用次数为 $n$ 的论文,然后将每篇论文的引用次数作为下标,将 $cnt$ 中对应的元素值加 $1$。这样我们就统计出了每个引用次数对应的论文篇数。
接下来,我们从大到小枚举 $h$ 值,将 $cnt$ 中下标为 $h$ 的元素值加到变量 $s$ 中,其中 $s$ 表示引用次数大于等于 $h$ 的论文篇数。如果 $s \geq h$,说明至少有 $h$ 篇论文分别被引用了至少 $h$ 次,直接返回 $h$ 即可。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 citations
的长度。
| class Solution:
def hIndex(self, citations: List[int]) -> int:
n = len(citations)
cnt = [0] * (n + 1)
for x in citations:
cnt[min(x, n)] += 1
s = 0
for h in range(n, -1, -1):
s += cnt[h]
if s >= h:
return h
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution {
public int hIndex(int[] citations) {
int n = citations.length;
int[] cnt = new int[n + 1];
for (int x : citations) {
++cnt[Math.min(x, n)];
}
for (int h = n, s = 0;; --h) {
s += cnt[h];
if (s >= h) {
return h;
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
int hIndex(vector<int>& citations) {
int n = citations.size();
int cnt[n + 1];
memset(cnt, 0, sizeof(cnt));
for (int x : citations) {
++cnt[min(x, n)];
}
for (int h = n, s = 0;; --h) {
s += cnt[h];
if (s >= h) {
return h;
}
}
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | func hIndex(citations []int) int {
n := len(citations)
cnt := make([]int, n+1)
for _, x := range citations {
cnt[min(x, n)]++
}
for h, s := n, 0; ; h-- {
s += cnt[h]
if s >= h {
return h
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | function hIndex(citations: number[]): number {
const n: number = citations.length;
const cnt: number[] = new Array(n + 1).fill(0);
for (const x of citations) {
++cnt[Math.min(x, n)];
}
for (let h = n, s = 0; ; --h) {
s += cnt[h];
if (s >= h) {
return h;
}
}
}
|
方法三:二分查找
我们注意到,如果存在一个 $h$ 值满足至少有 $h$ 篇论文至少被引用 $h$ 次,那么对于任意一个 $h' \lt h$,都有至少 $h'$ 篇论文至少被引用 $h'$ 次。因此我们可以使用二分查找的方法,找到最大的 $h$ 值,使得至少有 $h$ 篇论文至少被引用 $h$ 次。
我们定义二分查找的左边界 $l=0$,右边界 $r=n$。每次我们取 $mid = \lfloor \frac{l + r + 1}{2} \rfloor$,其中 $\lfloor x \rfloor$ 表示对 $x$ 向下取整。然后我们统计数组 citations
中大于等于 $mid$ 的元素的个数,记为 $s$。如果 $s \geq mid$,说明至少有 $mid$ 篇论文至少被引用 $mid$ 次,此时我们将左边界 $l$ 变为 $mid$,否则我们将右边界 $r$ 变为 $mid-1$。当左边界 $l$ 等于右边界 $r$ 时,我们找到了最大的 $h$ 值,即为 $l$ 或 $r$。
时间复杂度 $O(n \times \log n)$,其中 $n$ 是数组 citations
的长度。空间复杂度 $O(1)$。