题目描述
给你一个数组 start
,其中 start = [startX, startY]
表示你的初始位置位于二维空间上的 (startX, startY)
。另给你一个数组 target
,其中 target = [targetX, targetY]
表示你的目标位置 (targetX, targetY)
。
从位置 (x1, y1)
到空间中任一其他位置 (x2, y2)
的 代价 是 |x2 - x1| + |y2 - y1|
。
给你一个二维数组 specialRoads
,表示空间中存在的一些 特殊路径。其中 specialRoads[i] = [x1i, y1i, x2i, y2i, costi]
表示第 i
条特殊路径可以从 (x1i, y1i)
到 (x2i, y2i)
,但成本等于 costi
。你可以使用每条特殊路径任意次数。
返回从 (startX, startY)
到 (targetX, targetY)
所需的 最小 代价。
示例 1:
输入:start = [1,1], target = [4,5], specialRoads = [[1,2,3,3,2],[3,4,4,5,1]]
输出:5
解释:
- (1,1) 到 (1,2) 花费为 |1 - 1| + |2 - 1| = 1。
- (1,2) 到 (3,3)。使用
specialRoads[0]
花费为 2。
- (3,3) 到 (3,4) 花费为 |3 - 3| + |4 - 3| = 1。
- (3,4) 到 (4,5)。使用
specialRoads[1]
花费为 1。
所以总花费是 1 + 2 + 1 + 1 = 5。
示例 2:
输入:start = [3,2], target = [5,7], specialRoads = [[5,7,3,2,1],[3,2,3,4,4],[3,3,5,5,5],[3,4,5,6,6]]
输出:7
解释:
不使用任何特殊路径,直接从开始到结束位置是最优的,花费为 |5 - 3| + |7 - 2| = 7。
注意 specialRoads[0]
直接从 (5,7) 到 (3,2)。
示例 3:
输入:start = [1,1], target = [10,4], specialRoads = [[4,2,1,1,3],[1,2,7,4,4],[10,3,6,1,2],[6,1,1,2,3]]
输出:8
解释:
- (1,1) 到 (1,2) 花费为 |1 - 1| + |2 - 1| = 1。
- (1,2) 到 (7,4)。使用
specialRoads[1]
花费为 4。
- (7,4) 到 (10,4) 花费为 |10 - 7| + |4 - 4| = 3。
提示:
start.length == target.length == 2
1 <= startX <= targetX <= 105
1 <= startY <= targetY <= 105
1 <= specialRoads.length <= 200
specialRoads[i].length == 5
startX <= x1i, x2i <= targetX
startY <= y1i, y2i <= targetY
1 <= costi <= 105
解法
方法一:Dijkstra
我们可以发现,对于访问到的每个坐标点 $(x, y)$,假设从起点到 $(x, y)$ 的最小代价为 $d$。如果选择直接移动到 $(targetX, targetY)$,那么总代价就是 $d + |x - targetX| + |y - targetY|$。如果选择经过某条特殊路径 $(x_1, y_1) \rightarrow (x_2, y_2)$,那么我们需要可以花费 $|x - x_1| + |y - y_1| + cost$ 的代价,从 $(x, y)$ 移动到 $(x_2, y_2)$。
因此,我们可以使用 Dijkstra 算法求出从起点到所有点的最小代价,然后从中选择最小的那个。
我们定义一个优先队列 $q$,队列中的每一个元素是一个三元组 $(d, x, y)$,表示从起点到 $(x, y)$ 的最小代价为 $d$。初始时,我们将 $(0, startX, startY)$ 加入队列中。
在每一步中,我们取出队首元素 $(d, x, y)$,此时我们可以更新答案,即 $ans = \min(ans, d + dist(x, y, targetX, targetY))$。然后我们枚举所有的特殊路径 $(x_1, y_1) \rightarrow (x_2, y_2)$,将 $(d + dist(x, y, x_1, y_1) + cost, x_2, y_2)$ 加入队列中。
最后当队列为空时,我们就可以得到答案。
时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(n^2)$。其中 $n$ 是特殊路径的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution:
def minimumCost(
self, start: List[int], target: List[int], specialRoads: List[List[int]]
) -> int:
def dist(x1: int, y1: int, x2: int, y2: int) -> int:
return abs(x1 - x2) + abs(y1 - y2)
q = [(0, start[0], start[1])]
vis = set()
ans = inf
while q:
d, x, y = heappop(q)
if (x, y) in vis:
continue
vis.add((x, y))
ans = min(ans, d + dist(x, y, *target))
for x1, y1, x2, y2, cost in specialRoads:
heappush(q, (d + dist(x, y, x1, y1) + cost, x2, y2))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | class Solution {
public int minimumCost(int[] start, int[] target, int[][] specialRoads) {
int ans = 1 << 30;
int n = 1000000;
PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
Set<Long> vis = new HashSet<>();
q.offer(new int[] {0, start[0], start[1]});
while (!q.isEmpty()) {
var p = q.poll();
int x = p[1], y = p[2];
long k = 1L * x * n + y;
if (vis.contains(k)) {
continue;
}
vis.add(k);
int d = p[0];
ans = Math.min(ans, d + dist(x, y, target[0], target[1]));
for (var r : specialRoads) {
int x1 = r[0], y1 = r[1], x2 = r[2], y2 = r[3], cost = r[4];
q.offer(new int[] {d + dist(x, y, x1, y1) + cost, x2, y2});
}
}
return ans;
}
private int dist(int x1, int y1, int x2, int y2) {
return Math.abs(x1 - x2) + Math.abs(y1 - y2);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
public:
int minimumCost(vector<int>& start, vector<int>& target, vector<vector<int>>& specialRoads) {
auto dist = [](int x1, int y1, int x2, int y2) {
return abs(x1 - x2) + abs(y1 - y2);
};
int ans = 1 << 30;
int n = 1e6;
priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<tuple<int, int, int>>> pq;
pq.push({0, start[0], start[1]});
unordered_set<long long> vis;
while (!pq.empty()) {
auto [d, x, y] = pq.top();
pq.pop();
long long k = 1LL * x * n + y;
if (vis.count(k)) {
continue;
}
vis.insert(k);
ans = min(ans, d + dist(x, y, target[0], target[1]));
for (auto& r : specialRoads) {
int x1 = r[0], y1 = r[1], x2 = r[2], y2 = r[3], cost = r[4];
pq.push({d + dist(x, y, x1, y1) + cost, x2, y2});
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | func minimumCost(start []int, target []int, specialRoads [][]int) int {
ans := 1 << 30
const n int = 1e6
pq := hp{{0, start[0], start[1]}}
vis := map[int]bool{}
for len(pq) > 0 {
p := pq[0]
heap.Pop(&pq)
d, x, y := p.d, p.x, p.y
if vis[x*n+y] {
continue
}
vis[x*n+y] = true
ans = min(ans, d+dist(x, y, target[0], target[1]))
for _, r := range specialRoads {
x1, y1, x2, y2, cost := r[0], r[1], r[2], r[3], r[4]
heap.Push(&pq, tuple{d + dist(x, y, x1, y1) + cost, x2, y2})
}
}
return ans
}
func dist(x1, y1, x2, y2 int) int {
return abs(x1-x2) + abs(y1-y2)
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
type tuple struct {
d, x, y int
}
type hp []tuple
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].d < h[j].d }
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any) { *h = append(*h, v.(tuple)) }
func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89 | function minimumCost(start: number[], target: number[], specialRoads: number[][]): number {
const dist = (x1: number, y1: number, x2: number, y2: number): number => {
return Math.abs(x1 - x2) + Math.abs(y1 - y2);
};
const q = new Heap<[number, number, number]>((a, b) => a[0] - b[0]);
q.push([0, start[0], start[1]]);
const n = 1000000;
const vis: Set<number> = new Set();
let ans = 1 << 30;
while (q.size()) {
const [d, x, y] = q.pop();
const k = x * n + y;
if (vis.has(k)) {
continue;
}
vis.add(k);
ans = Math.min(ans, d + dist(x, y, target[0], target[1]));
for (const [x1, y1, x2, y2, cost] of specialRoads) {
q.push([d + dist(x, y, x1, y1) + cost, x2, y2]);
}
}
return ans;
}
type Compare<T> = (lhs: T, rhs: T) => number;
class Heap<T = number> {
data: Array<T | null>;
lt: (i: number, j: number) => boolean;
constructor();
constructor(data: T[]);
constructor(compare: Compare<T>);
constructor(data: T[], compare: Compare<T>);
constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number);
constructor(
data: T[] | Compare<T> = [],
compare: Compare<T> = (lhs: T, rhs: T) => (lhs < rhs ? -1 : lhs > rhs ? 1 : 0),
) {
if (typeof data === 'function') {
compare = data;
data = [];
}
this.data = [null, ...data];
this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0;
for (let i = this.size(); i > 0; i--) this.heapify(i);
}
size(): number {
return this.data.length - 1;
}
push(v: T): void {
this.data.push(v);
let i = this.size();
while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1));
}
pop(): T {
this.swap(1, this.size());
const top = this.data.pop();
this.heapify(1);
return top!;
}
top(): T {
return this.data[1]!;
}
heapify(i: number): void {
while (true) {
let min = i;
const [l, r, n] = [i * 2, i * 2 + 1, this.data.length];
if (l < n && this.lt(l, min)) min = l;
if (r < n && this.lt(r, min)) min = r;
if (min !== i) {
this.swap(i, min);
i = min;
} else break;
}
}
clear(): void {
this.data = [null];
}
private swap(i: number, j: number): void {
const d = this.data;
[d[i], d[j]] = [d[j], d[i]];
}
}
|