跳转至

2642. 设计可以求最短路径的图类

题目描述

给你一个有 n 个节点的 有向带权 图,节点编号为 0 到 n - 1 。图中的初始边用数组 edges 表示,其中 edges[i] = [fromi, toi, edgeCosti] 表示从 fromi 到 toi 有一条代价为 edgeCosti 的边。

请你实现一个 Graph 类:

  • Graph(int n, int[][] edges) 初始化图有 n 个节点,并输入初始边。
  • addEdge(int[] edge) 向边集中添加一条边,其中 edge = [from, to, edgeCost] 。数据保证添加这条边之前对应的两个节点之间没有有向边。
  • int shortestPath(int node1, int node2) 返回从节点 node1 到 node2 的路径 最小 代价。如果路径不存在,返回 -1 。一条路径的代价是路径中所有边代价之和。

 

示例 1:

输入:
["Graph", "shortestPath", "shortestPath", "addEdge", "shortestPath"]
[[4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]], [3, 2], [0, 3], [[1, 3, 4]], [0, 3]]
输出:
[null, 6, -1, null, 6]

解释:
Graph g = new Graph(4, [[0, 2, 5], [0, 1, 2], [1, 2, 1], [3, 0, 3]]);
g.shortestPath(3, 2); // 返回 6 。从 3 到 2 的最短路径如第一幅图所示:3 -> 0 -> 1 -> 2 ,总代价为 3 + 2 + 1 = 6 。
g.shortestPath(0, 3); // 返回 -1 。没有从 0 到 3 的路径。
g.addEdge([1, 3, 4]); // 添加一条节点 1 到节点 3 的边,得到第二幅图。
g.shortestPath(0, 3); // 返回 6 。从 0 到 3 的最短路径为 0 -> 1 -> 3 ,总代价为 2 + 4 = 6 。

 

提示:

  • 1 <= n <= 100
  • 0 <= edges.length <= n * (n - 1)
  • edges[i].length == edge.length == 3
  • 0 <= fromi, toi, from, to, node1, node2 <= n - 1
  • 1 <= edgeCosti, edgeCost <= 106
  • 图中任何时候都不会有重边和自环。
  • 调用 addEdge 至多 100 次。
  • 调用 shortestPath 至多 100 次。

解法

方法一:Dijsktra 算法

在初始化函数中,我们先用邻接矩阵 $g$ 存储图的边权,其中 $g_{ij}$ 表示从节点 $i$ 到节点 $j$ 的边权,如果 $i$ 和 $j$ 之间没有边,则 $g_{ij}$ 的值为 $\infty$。

addEdge 函数中,我们更新 $g_{ij}$ 的值为 $edge[2]$。

shortestPath 函数中,我们使用 Dijsktra 算法求从节点 $node1$ 到节点 $node2$ 的最短路径,其中 $dist[i]$ 表示从节点 $node1$ 到节点 $i$ 的最短路径,$vis[i]$ 表示节点 $i$ 是否已经被访问过。我们初始化 $dist[node1]$ 为 $0$,其余的 $dist[i]$ 均为 $\infty$。然后我们遍历 $n$ 次,每次找到当前未被访问过的节点 $t$,使得 $dist[t]$ 最小。然后我们将节点 $t$ 标记为已访问,然后更新 $dist[i]$ 的值为 $min(dist[i], dist[t] + g_{ti})$。最后我们返回 $dist[node2]$,如果 $dist[node2]$ 为 $\infty$,则说明从节点 $node1$ 到节点 $node2$ 不存在路径,返回 $-1$。

时间复杂度 $O(n^2 \times q)$,空间复杂度 $O(n^2)$。其中 $n$ 为节点数,而 $q$ 为 shortestPath 函数的调用次数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Graph:
    def __init__(self, n: int, edges: List[List[int]]):
        self.n = n
        self.g = [[inf] * n for _ in range(n)]
        for f, t, c in edges:
            self.g[f][t] = c

    def addEdge(self, edge: List[int]) -> None:
        f, t, c = edge
        self.g[f][t] = c

    def shortestPath(self, node1: int, node2: int) -> int:
        dist = [inf] * self.n
        dist[node1] = 0
        vis = [False] * self.n
        for _ in range(self.n):
            t = -1
            for j in range(self.n):
                if not vis[j] and (t == -1 or dist[t] > dist[j]):
                    t = j
            vis[t] = True
            for j in range(self.n):
                dist[j] = min(dist[j], dist[t] + self.g[t][j])
        return -1 if dist[node2] == inf else dist[node2]


# Your Graph object will be instantiated and called as such:
# obj = Graph(n, edges)
# obj.addEdge(edge)
# param_2 = obj.shortestPath(node1,node2)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class Graph {
    private int n;
    private int[][] g;
    private final int inf = 1 << 29;

    public Graph(int n, int[][] edges) {
        this.n = n;
        g = new int[n][n];
        for (var f : g) {
            Arrays.fill(f, inf);
        }
        for (int[] e : edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f][t] = c;
        }
    }

    public void addEdge(int[] edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f][t] = c;
    }

    public int shortestPath(int node1, int node2) {
        int[] dist = new int[n];
        boolean[] vis = new boolean[n];
        Arrays.fill(dist, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * Graph obj = new Graph(n, edges);
 * obj.addEdge(edge);
 * int param_2 = obj.shortestPath(node1,node2);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Graph {
public:
    Graph(int n, vector<vector<int>>& edges) {
        this->n = n;
        g = vector<vector<int>>(n, vector<int>(n, inf));
        for (auto& e : edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f][t] = c;
        }
    }

    void addEdge(vector<int> edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f][t] = c;
    }

    int shortestPath(int node1, int node2) {
        vector<bool> vis(n);
        vector<int> dist(n, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = min(dist[j], dist[t] + g[t][j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }

private:
    vector<vector<int>> g;
    int n;
    const int inf = 1 << 29;
};

/**
 * Your Graph object will be instantiated and called as such:
 * Graph* obj = new Graph(n, edges);
 * obj->addEdge(edge);
 * int param_2 = obj->shortestPath(node1,node2);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
const inf = 1 << 29

type Graph struct {
    g [][]int
}

func Constructor(n int, edges [][]int) Graph {
    g := make([][]int, n)
    for i := range g {
        g[i] = make([]int, n)
        for j := range g[i] {
            g[i][j] = inf
        }
    }
    for _, e := range edges {
        f, t, c := e[0], e[1], e[2]
        g[f][t] = c
    }
    return Graph{g}
}

func (this *Graph) AddEdge(edge []int) {
    f, t, c := edge[0], edge[1], edge[2]
    this.g[f][t] = c
}

func (this *Graph) ShortestPath(node1 int, node2 int) int {
    n := len(this.g)
    dist := make([]int, n)
    for i := range dist {
        dist[i] = inf
    }
    vis := make([]bool, n)
    dist[node1] = 0
    for i := 0; i < n; i++ {
        t := -1
        for j := 0; j < n; j++ {
            if !vis[j] && (t == -1 || dist[t] > dist[j]) {
                t = j
            }
        }
        vis[t] = true
        for j := 0; j < n; j++ {
            dist[j] = min(dist[j], dist[t]+this.g[t][j])
        }
    }
    if dist[node2] >= inf {
        return -1
    }
    return dist[node2]
}

/**
 * Your Graph object will be instantiated and called as such:
 * obj := Constructor(n, edges);
 * obj.AddEdge(edge);
 * param_2 := obj.ShortestPath(node1,node2);
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Graph {
    private g: number[][] = [];
    private inf: number = 1 << 29;

    constructor(n: number, edges: number[][]) {
        this.g = Array.from({ length: n }, () => Array(n).fill(this.inf));
        for (const [f, t, c] of edges) {
            this.g[f][t] = c;
        }
    }

    addEdge(edge: number[]): void {
        const [f, t, c] = edge;
        this.g[f][t] = c;
    }

    shortestPath(node1: number, node2: number): number {
        const n = this.g.length;
        const dist: number[] = new Array(n).fill(this.inf);
        dist[node1] = 0;
        const vis: boolean[] = new Array(n).fill(false);
        for (let i = 0; i < n; ++i) {
            let t = -1;
            for (let j = 0; j < n; ++j) {
                if (!vis[j] && (t === -1 || dist[j] < dist[t])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (let j = 0; j < n; ++j) {
                dist[j] = Math.min(dist[j], dist[t] + this.g[t][j]);
            }
        }
        return dist[node2] >= this.inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * var obj = new Graph(n, edges)
 * obj.addEdge(edge)
 * var param_2 = obj.shortestPath(node1,node2)
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class Graph {
    private int n;
    private int[,] g;
    private readonly int inf = 1 << 29;

    public Graph(int n, int[][] edges) {
        this.n = n;
        g = new int[n, n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                g[i, j] = inf;
            }
        }
        foreach (var e in edges) {
            int f = e[0], t = e[1], c = e[2];
            g[f, t] = c;
        }
    }

    public void AddEdge(int[] edge) {
        int f = edge[0], t = edge[1], c = edge[2];
        g[f, t] = c;
    }

    public int ShortestPath(int node1, int node2) {
        int[] dist = new int[n];
        bool[] vis = new bool[n];
        Array.Fill(dist, inf);
        dist[node1] = 0;
        for (int i = 0; i < n; ++i) {
            int t = -1;
            for (int j = 0; j < n; ++j) {
                if (!vis[j] && (t == -1 || dist[t] > dist[j])) {
                    t = j;
                }
            }
            vis[t] = true;
            for (int j = 0; j < n; ++j) {
                dist[j] = Math.Min(dist[j], dist[t] + g[t, j]);
            }
        }
        return dist[node2] >= inf ? -1 : dist[node2];
    }
}

/**
 * Your Graph object will be instantiated and called as such:
 * Graph obj = new Graph(n, edges);
 * obj.AddEdge(edge);
 * int param_2 = obj.ShortestPath(node1,node2);
 */

评论