跳转至

264. 丑数 II

题目描述

给你一个整数 n ,请你找出并返回第 n丑数

丑数 就是质因子只包含 23 和 5 的正整数。

 

示例 1:

输入:n = 10
输出:12
解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。

示例 2:

输入:n = 1
输出:1
解释:1 通常被视为丑数。

 

提示:

  • 1 <= n <= 1690

解法

方法一:优先队列(最小堆)

初始时,将第一个丑数 $1$ 加入堆。每次取出堆顶元素 $x$,由于 $2x$, $3x$, $5x$ 也是丑数,因此将它们加入堆中。为了避免重复元素,可以用哈希表 $vis$ 去重。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution:
    def nthUglyNumber(self, n: int) -> int:
        h = [1]
        vis = {1}
        ans = 1
        for _ in range(n):
            ans = heappop(h)
            for v in [2, 3, 5]:
                nxt = ans * v
                if nxt not in vis:
                    vis.add(nxt)
                    heappush(h, nxt)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int nthUglyNumber(int n) {
        Set<Long> vis = new HashSet<>();
        PriorityQueue<Long> q = new PriorityQueue<>();
        int[] f = new int[] {2, 3, 5};
        q.offer(1L);
        vis.add(1L);
        long ans = 0;
        while (n-- > 0) {
            ans = q.poll();
            for (int v : f) {
                long next = ans * v;
                if (vis.add(next)) {
                    q.offer(next);
                }
            }
        }
        return (int) ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int nthUglyNumber(int n) {
        priority_queue<long, vector<long>, greater<long>> q;
        q.push(1l);
        unordered_set<long> vis{{1l}};
        long ans = 1;
        vector<int> f = {2, 3, 5};
        while (n--) {
            ans = q.top();
            q.pop();
            for (int& v : f) {
                long nxt = ans * v;
                if (!vis.count(nxt)) {
                    vis.insert(nxt);
                    q.push(nxt);
                }
            }
        }
        return (int) ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
func nthUglyNumber(n int) int {
    h := IntHeap([]int{1})
    heap.Init(&h)
    ans := 1
    vis := map[int]bool{1: true}
    for n > 0 {
        ans = heap.Pop(&h).(int)
        for _, v := range []int{2, 3, 5} {
            nxt := ans * v
            if !vis[nxt] {
                vis[nxt] = true
                heap.Push(&h, nxt)
            }
        }
        n--
    }
    return ans
}

type IntHeap []int

func (h IntHeap) Len() int           { return len(h) }
func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h IntHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *IntHeap) Push(x any) {
    *h = append(*h, x.(int))
}
func (h *IntHeap) Pop() any {
    old := *h
    n := len(old)
    x := old[n-1]
    *h = old[0 : n-1]
    return x
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
/**
 * @param {number} n
 * @return {number}
 */
var nthUglyNumber = function (n) {
    let dp = [1];
    let p2 = 0,
        p3 = 0,
        p5 = 0;
    for (let i = 1; i < n; ++i) {
        const next2 = dp[p2] * 2,
            next3 = dp[p3] * 3,
            next5 = dp[p5] * 5;
        dp[i] = Math.min(next2, Math.min(next3, next5));
        if (dp[i] == next2) ++p2;
        if (dp[i] == next3) ++p3;
        if (dp[i] == next5) ++p5;
        dp.push(dp[i]);
    }
    return dp[n - 1];
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
public class Solution {
    public int NthUglyNumber(int n) {
        int[] dp = new int[n];
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i = 1; i < n; ++i) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = Math.Min(next2, Math.Min(next3, next5));
            if (dp[i] == next2) {
                ++p2;
            }
            if (dp[i] == next3) {
                ++p3;
            }
            if (dp[i] == next5) {
                ++p5;
            }
        }
        return dp[n - 1];
    }
}

方法二:动态规划

定义数组 $dp$,其中 $dp[i-1]$ 表示第 $i$ 个丑数,那么第 $n$ 个丑数就是 $dp[n - 1]$。最小的丑数是 $1$,所以 $dp[0]=1$。

定义 $3$ 个指针 $p_2$, $p_3$ 和 $p_5$,表示下一个丑数是当前指针指向的丑数乘以对应的质因数。初始时,三个指针的值都指向 $0$。

当 $i$ 在 $[1,2..n-1]$ 范围内,我们更新 $dp[i]=\min(dp[p_2] \times 2, dp[p_3] \times 3, dp[p_5] \times 5)$,然后分别比较 $dp[i]$ 与 $dp[p_2] \times 2$, $dp[p_3] \times 3$, $dp[p_5] \times 5$ 是否相等,若是,则对应的指针加 $1$。

最后返回 $dp[n - 1]$ 即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def nthUglyNumber(self, n: int) -> int:
        dp = [1] * n
        p2 = p3 = p5 = 0
        for i in range(1, n):
            next2, next3, next5 = dp[p2] * 2, dp[p3] * 3, dp[p5] * 5
            dp[i] = min(next2, next3, next5)
            if dp[i] == next2:
                p2 += 1
            if dp[i] == next3:
                p3 += 1
            if dp[i] == next5:
                p5 += 1
        return dp[-1]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int nthUglyNumber(int n) {
        int[] dp = new int[n];
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i = 1; i < n; ++i) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = Math.min(next2, Math.min(next3, next5));
            if (dp[i] == next2) ++p2;
            if (dp[i] == next3) ++p3;
            if (dp[i] == next5) ++p5;
        }
        return dp[n - 1];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution {
public:
    int nthUglyNumber(int n) {
        vector<int> dp(n);
        dp[0] = 1;
        int p2 = 0, p3 = 0, p5 = 0;
        for (int i = 1; i < n; ++i) {
            int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5;
            dp[i] = min(next2, min(next3, next5));
            if (dp[i] == next2) ++p2;
            if (dp[i] == next3) ++p3;
            if (dp[i] == next5) ++p5;
        }
        return dp[n - 1];
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
func nthUglyNumber(n int) int {
    dp := make([]int, n)
    dp[0] = 1
    p2, p3, p5 := 0, 0, 0
    for i := 1; i < n; i++ {
        next2, next3, next5 := dp[p2]*2, dp[p3]*3, dp[p5]*5
        dp[i] = min(next2, min(next3, next5))
        if dp[i] == next2 {
            p2++
        }
        if dp[i] == next3 {
            p3++
        }
        if dp[i] == next5 {
            p5++
        }
    }
    return dp[n-1]
}

评论