2616. 最小化数对的最大差值
题目描述
给你一个下标从 0 开始的整数数组 nums
和一个整数 p
。请你从 nums
中找到 p
个下标对,每个下标对对应数值取差值,你需要使得这 p
个差值的 最大值 最小。同时,你需要确保每个下标在这 p
个下标对中最多出现一次。
对于一个下标对 i
和 j
,这一对的差值为 |nums[i] - nums[j]|
,其中 |x|
表示 x
的 绝对值 。
请你返回 p
个下标对对应数值 最大差值 的 最小值 。
示例 1:
输入:nums = [10,1,2,7,1,3], p = 2 输出:1 解释:第一个下标对选择 1 和 4 ,第二个下标对选择 2 和 5 。 最大差值为 max(|nums[1] - nums[4]|, |nums[2] - nums[5]|) = max(0, 1) = 1 。所以我们返回 1 。
示例 2:
输入:nums = [4,2,1,2], p = 1 输出:0 解释:选择下标 1 和 3 构成下标对。差值为 |2 - 2| = 0 ,这是最大差值的最小值。
提示:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= p <= (nums.length)/2
解法
方法一:二分查找 + 贪心
我们注意到,最大差值具备单调性,即如果最大差值 $x$ 满足条件,那么 $x-1$ 也一定满足条件。因此我们可以使用二分查找的方法,找到最小的满足条件的最大差值。
我们可以将数组 nums
排序,然后枚举最大差值 $x$,判断是否存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$。如果存在,那么我们就可以将 $x$ 减小,否则我们就将 $x$ 增大。
判断是否存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$,可以使用贪心的方法。我们从左到右遍历数组 nums
,对于当前遍历到的下标 $i$,如果 $i+1$ 位置的数与 $i$ 位置的数的差值不超过 $x$,那么我们就可以将 $i$ 和 $i+1$ 位置的数作为一个下标对,更新下标对的数量 $cnt$,然后将 $i$ 的值增加 $2$。否则,我们就将 $i$ 的值增加 $1$。遍历结束,如果 $cnt$ 的值大于等于 $p$,那么就说明存在 $p$ 个下标对,每个下标对对应数值取差值的最大值不超过 $x$,否则就说明不存在。
时间复杂度 $O(n \times (\log n + \log m))$,其中 $n$ 是数组 nums
的长度,而 $m$ 是数组 nums
中的最大值与最小值的差值。空间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|