跳转至

2615. 等值距离和

题目描述

给你一个下标从 0 开始的整数数组 nums 。现有一个长度等于 nums.length 的数组 arr 。对于满足 nums[j] == nums[i]j != i 的所有 jarr[i] 等于所有 |i - j| 之和。如果不存在这样的 j ,则令 arr[i] 等于 0

返回数组 arr

 

示例 1:

输入:nums = [1,3,1,1,2]
输出:[5,0,3,4,0]
解释:
i = 0 ,nums[0] == nums[2] 且 nums[0] == nums[3] 。因此,arr[0] = |0 - 2| + |0 - 3| = 5 。 
i = 1 ,arr[1] = 0 因为不存在值等于 3 的其他下标。
i = 2 ,nums[2] == nums[0] 且 nums[2] == nums[3] 。因此,arr[2] = |2 - 0| + |2 - 3| = 3 。
i = 3 ,nums[3] == nums[0] 且 nums[3] == nums[2] 。因此,arr[3] = |3 - 0| + |3 - 2| = 4 。 
i = 4 ,arr[4] = 0 因为不存在值等于 2 的其他下标。

示例 2:

输入:nums = [0,5,3]
输出:[0,0,0]
解释:因为 nums 中的元素互不相同,对于所有 i ,都有 arr[i] = 0 。

 

提示:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 109

解法

方法一:哈希表 + 前缀和

我们先用哈希表 $d$ 记录数组 $nums$ 中每个元素对应的下标列表,即 $d[x]$ 表示数组 $nums$ 中所有值为 $x$ 的下标列表。

对于哈希表 $d$ 中的每个值列表 $idx$,我们可以计算出 $idx$ 中每个下标 $i$ 对应的 $arr[i]$ 的值。对于第一个下标 $idx[0]$,右边所有下标距离 $idx[0]$ 的和 $right=\sum_{i=0}^{m-1} - idx[0] \times m$。接下来我们遍历 $idx$,每一次计算得到 $ans[idx[i]] = left + right$,然后更新 $left$ 和 $right$,即 $left = left + (idx[i+1] - idx[i]) \times (i+1)$,而 $right = right - (idx[i+1] - idx[i]) \times (m-i-1)$。

遍历结束后,我们得到了数组 $nums$ 中每个元素对应的 $arr$ 的值,即 $ans$。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $nums$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def distance(self, nums: List[int]) -> List[int]:
        d = defaultdict(list)
        for i, x in enumerate(nums):
            d[x].append(i)
        ans = [0] * len(nums)
        for idx in d.values():
            left, right = 0, sum(idx) - len(idx) * idx[0]
            for i in range(len(idx)):
                ans[idx[i]] = left + right
                if i + 1 < len(idx):
                    left += (idx[i + 1] - idx[i]) * (i + 1)
                    right -= (idx[i + 1] - idx[i]) * (len(idx) - i - 1)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
    public long[] distance(int[] nums) {
        int n = nums.length;
        long[] ans = new long[n];
        Map<Integer, List<Integer>> d = new HashMap<>();
        for (int i = 0; i < n; ++i) {
            d.computeIfAbsent(nums[i], k -> new ArrayList<>()).add(i);
        }
        for (var idx : d.values()) {
            int m = idx.size();
            long left = 0;
            long right = -1L * m * idx.get(0);
            for (int i : idx) {
                right += i;
            }
            for (int i = 0; i < m; ++i) {
                ans[idx.get(i)] = left + right;
                if (i + 1 < m) {
                    left += (idx.get(i + 1) - idx.get(i)) * (i + 1L);
                    right -= (idx.get(i + 1) - idx.get(i)) * (m - i - 1L);
                }
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
public:
    vector<long long> distance(vector<int>& nums) {
        int n = nums.size();
        vector<long long> ans(n);
        unordered_map<int, vector<int>> d;
        for (int i = 0; i < n; ++i) {
            d[nums[i]].push_back(i);
        }
        for (auto& [_, idx] : d) {
            int m = idx.size();
            long long left = 0;
            long long right = -1LL * m * idx[0];
            for (int i : idx) {
                right += i;
            }
            for (int i = 0; i < m; ++i) {
                ans[idx[i]] = left + right;
                if (i + 1 < m) {
                    left += (idx[i + 1] - idx[i]) * (i + 1);
                    right -= (idx[i + 1] - idx[i]) * (m - i - 1);
                }
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
func distance(nums []int) []int64 {
    n := len(nums)
    ans := make([]int64, n)
    d := map[int][]int{}
    for i, x := range nums {
        d[x] = append(d[x], i)
    }
    for _, idx := range d {
        m := len(idx)
        left, right := 0, -m*idx[0]
        for _, i := range idx {
            right += i
        }
        for i := range idx {
            ans[idx[i]] = int64(left + right)
            if i+1 < m {
                left += (idx[i+1] - idx[i]) * (i + 1)
                right -= (idx[i+1] - idx[i]) * (m - i - 1)
            }
        }
    }
    return ans
}

评论