跳转至

2612. 最少翻转操作数

题目描述

给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。

同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。

你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。

请你返回一个数组 ans ,对于 [0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。

  • 子数组 指的是一个数组里一段连续 非空 的元素序列。
  • 对于所有的 i ,ans[i] 相互之间独立计算。
  • 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。

 

示例 1:

输入:n = 4, p = 0, banned = [1,2], k = 4
输出:[0,-1,-1,1]
解释:k = 4,所以只有一种可行的翻转操作,就是将整个数组翻转。一开始 1 在位置 0 处,所以将它翻转到位置 0 处需要的操作数为 0 。
我们不能将 1 翻转到 banned 中的位置,所以位置 1 和 2 处的答案都是 -1 。
通过一次翻转操作,可以将 1 放到位置 3 处,所以位置 3 的答案是 1 。

示例 2:

输入:n = 5, p = 0, banned = [2,4], k = 3
输出:[0,-1,-1,-1,-1]
解释:这个例子中 1 一开始在位置 0 处,所以此下标的答案为 0 。
翻转的子数组长度为 k = 3 ,1 此时在位置 0 处,所以我们可以翻转子数组 [0, 2],但翻转后的下标 2 在 banned 中,所以不能执行此操作。
由于 1 没法离开位置 0 ,所以其他位置的答案都是 -1 。

示例 3:

输入:n = 4, p = 2, banned = [0,1,3], k = 1
输出:[-1,-1,0,-1]
解释:这个例子中,我们只能对长度为 1 的子数组执行翻转操作,所以 1 无法离开初始位置。

 

提示:

  • 1 <= n <= 105
  • 0 <= p <= n - 1
  • 0 <= banned.length <= n - 1
  • 0 <= banned[i] <= n - 1
  • 1 <= k <= n 
  • banned[i] != p
  • banned 中的值 互不相同 。

解法

方法一:有序集合 + BFS

我们注意到,对于一个子数组区间 $[l,..r]$ 中的任意一个下标 $i$,翻转后的下标 $j = l + r - i$。

如果子数组向右移动一个位置,那么 $j = l + 1 + r + 1 - i = l + r - i + 2$,即 $j$ 会增加 $2$。

同理,如果子数组向左移动一个位置,那么 $j = l - 1 + r - 1 - i = l + r - i - 2$,即 $j$ 会减少 $2$。

因此,对于一个特定的下标 $i$,其翻转后的所有位置构成了一个公差为 $2$ 的等差数列,也即是说,翻转后的所有下标,奇偶性都是相同的。

接下来,我们考虑下标 $i$ 翻转后的位置 $j$ 的取值范围。

  • 如果不考虑边界的情况,那么 $j$ 的取值范围为 $[i - k + 1, i + k - 1]$。
  • 如果子数组在最左边,那么 $[l, r] = [0, k - 1]$,因此 $i$ 翻转后的下标 $j = 0 + k - 1 - i$,即 $j = k - i - 1$,因此 $j$ 的左边界 $mi = max(i - k + 1, k - i - 1)$。
  • 如果子数组在最右边,那么 $[l, r] = [n - k, n - 1]$,因此 $i$ 翻转后的下标 $j= n - k + n - 1 - i$,即 $j = n \times 2 - k - i - 1$,因此 $j$ 的右边界 $mx = min(i + k - 1, n \times 2 - k - i - 1)$。

我们用两个有序集合分别存储所有待搜索的奇数下标和偶数下标,这里需要排除数组 $banned$ 中的下标,以及下标 $p$。

接下来,我们使用 BFS 搜索,每次搜索当前下标 $i$ 所有翻转后的下标 $j$,即 $j = mi, mi + 2, mi + 4, \dots, mx$,更新下标 $j$ 的答案,并将下标 $j$ 加入到待搜索的队列中,同时将下标 $j$ 从对应的有序集合中移除。

当搜索结束时,即可得到所有下标的答案。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 题目中给定的数组长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def minReverseOperations(
        self, n: int, p: int, banned: List[int], k: int
    ) -> List[int]:
        ans = [-1] * n
        ans[p] = 0
        ts = [SortedSet() for _ in range(2)]
        for i in range(n):
            ts[i % 2].add(i)
        ts[p % 2].remove(p)
        for i in banned:
            ts[i % 2].remove(i)
        ts[0].add(n)
        ts[1].add(n)
        q = deque([p])
        while q:
            i = q.popleft()
            mi = max(i - k + 1, k - i - 1)
            mx = min(i + k - 1, n * 2 - k - i - 1)
            s = ts[mi % 2]
            j = s.bisect_left(mi)
            while s[j] <= mx:
                q.append(s[j])
                ans[s[j]] = ans[i] + 1
                s.remove(s[j])
                j = s.bisect_left(mi)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution {
    public int[] minReverseOperations(int n, int p, int[] banned, int k) {
        int[] ans = new int[n];
        TreeSet<Integer>[] ts = new TreeSet[] {new TreeSet<>(), new TreeSet<>()};
        for (int i = 0; i < n; ++i) {
            ts[i % 2].add(i);
            ans[i] = i == p ? 0 : -1;
        }
        ts[p % 2].remove(p);
        for (int i : banned) {
            ts[i % 2].remove(i);
        }
        ts[0].add(n);
        ts[1].add(n);
        Deque<Integer> q = new ArrayDeque<>();
        q.offer(p);
        while (!q.isEmpty()) {
            int i = q.poll();
            int mi = Math.max(i - k + 1, k - i - 1);
            int mx = Math.min(i + k - 1, n * 2 - k - i - 1);
            var s = ts[mi % 2];
            for (int j = s.ceiling(mi); j <= mx; j = s.ceiling(mi)) {
                q.offer(j);
                ans[j] = ans[i] + 1;
                s.remove(j);
            }
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
    vector<int> minReverseOperations(int n, int p, vector<int>& banned, int k) {
        vector<int> ans(n, -1);
        ans[p] = 0;
        set<int> ts[2];
        for (int i = 0; i < n; ++i) {
            ts[i % 2].insert(i);
        }
        ts[p % 2].erase(p);
        for (int i : banned) {
            ts[i % 2].erase(i);
        }
        ts[0].insert(n);
        ts[1].insert(n);
        queue<int> q{{p}};
        while (!q.empty()) {
            int i = q.front();
            q.pop();
            int mi = max(i - k + 1, k - i - 1);
            int mx = min(i + k - 1, n * 2 - k - i - 1);
            auto& s = ts[mi % 2];
            auto it = s.lower_bound(mi);
            while (*it <= mx) {
                int j = *it;
                ans[j] = ans[i] + 1;
                q.push(j);
                it = s.erase(it);
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func minReverseOperations(n int, p int, banned []int, k int) []int {
    ans := make([]int, n)
    ts := [2]*redblacktree.Tree{redblacktree.NewWithIntComparator(), redblacktree.NewWithIntComparator()}
    for i := 0; i < n; i++ {
        ts[i%2].Put(i, struct{}{})
        ans[i] = -1
    }
    ans[p] = 0
    ts[p%2].Remove(p)
    for _, i := range banned {
        ts[i%2].Remove(i)
    }
    ts[0].Put(n, struct{}{})
    ts[1].Put(n, struct{}{})
    q := []int{p}
    for len(q) > 0 {
        i := q[0]
        q = q[1:]
        mi := max(i-k+1, k-i-1)
        mx := min(i+k-1, n*2-k-i-1)
        s := ts[mi%2]
        for x, _ := s.Ceiling(mi); x.Key.(int) <= mx; x, _ = s.Ceiling(mi) {
            j := x.Key.(int)
            s.Remove(j)
            ans[j] = ans[i] + 1
            q = append(q, j)
        }
    }
    return ans
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
function minReverseOperations(n: number, p: number, banned: number[], k: number): number[] {
    const ans = new Array(n).fill(-1);
    const ts = new Array(2).fill(0).map(() => new TreeSet<number>());
    for (let i = 0; i < n; ++i) {
        ts[i % 2].add(i);
    }
    ans[p] = 0;
    ts[p % 2].delete(p);
    for (const i of banned) {
        ts[i % 2].delete(i);
    }
    ts[0].add(n);
    ts[1].add(n);
    let q = [p];
    while (q.length) {
        const t: number[] = [];
        for (const i of q) {
            const mi = Math.max(i - k + 1, k - i - 1);
            const mx = Math.min(i + k - 1, n * 2 - k - i - 1);
            const s = ts[mi % 2];
            for (let j = s.ceil(mi)!; j <= mx; j = s.ceil(j)!) {
                t.push(j);
                ans[j] = ans[i] + 1;
                s.delete(j);
            }
        }
        q = t;
    }
    return ans;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
    data: T;
    count: number;
    left: RBTreeNode<T> | null;
    right: RBTreeNode<T> | null;
    parent: RBTreeNode<T> | null;
    color: number;
    constructor(data: T) {
        this.data = data;
        this.left = this.right = this.parent = null;
        this.color = 0;
        this.count = 1;
    }

    sibling(): RBTreeNode<T> | null {
        if (!this.parent) return null; // sibling null if no parent
        return this.isOnLeft() ? this.parent.right : this.parent.left;
    }

    isOnLeft(): boolean {
        return this === this.parent!.left;
    }

    hasRedChild(): boolean {
        return (
            Boolean(this.left && this.left.color === 0) ||
            Boolean(this.right && this.right.color === 0)
        );
    }
}

class RBTree<T> {
    root: RBTreeNode<T> | null;
    lt: (l: T, r: T) => boolean;
    constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
        this.root = null;
        this.lt = (l: T, r: T) => compare(l, r) < 0;
    }

    rotateLeft(pt: RBTreeNode<T>): void {
        const right = pt.right!;
        pt.right = right.left;

        if (pt.right) pt.right.parent = pt;
        right.parent = pt.parent;

        if (!pt.parent) this.root = right;
        else if (pt === pt.parent.left) pt.parent.left = right;
        else pt.parent.right = right;

        right.left = pt;
        pt.parent = right;
    }

    rotateRight(pt: RBTreeNode<T>): void {
        const left = pt.left!;
        pt.left = left.right;

        if (pt.left) pt.left.parent = pt;
        left.parent = pt.parent;

        if (!pt.parent) this.root = left;
        else if (pt === pt.parent.left) pt.parent.left = left;
        else pt.parent.right = left;

        left.right = pt;
        pt.parent = left;
    }

    swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.color;
        p1.color = p2.color;
        p2.color = tmp;
    }

    swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.data;
        p1.data = p2.data;
        p2.data = tmp;
    }

    fixAfterInsert(pt: RBTreeNode<T>): void {
        let parent = null;
        let grandParent = null;

        while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
            parent = pt.parent;
            grandParent = pt.parent.parent;

            /*  Case : A
                Parent of pt is left child of Grand-parent of pt */
            if (parent === grandParent?.left) {
                const uncle = grandParent.right;

                /* Case : 1
                   The uncle of pt is also red
                   Only Recoloring required */
                if (uncle && uncle.color === 0) {
                    grandParent.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent;
                } else {
                    /* Case : 2
                       pt is right child of its parent
                       Left-rotation required */
                    if (pt === parent.right) {
                        this.rotateLeft(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is left child of its parent
                       Right-rotation required */
                    this.rotateRight(grandParent);
                    this.swapColor(parent!, grandParent);
                    pt = parent!;
                }
            } else {
                /* Case : B
               Parent of pt is right child of Grand-parent of pt */
                const uncle = grandParent!.left;

                /*  Case : 1
                    The uncle of pt is also red
                    Only Recoloring required */
                if (uncle != null && uncle.color === 0) {
                    grandParent!.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent!;
                } else {
                    /* Case : 2
                       pt is left child of its parent
                       Right-rotation required */
                    if (pt === parent.left) {
                        this.rotateRight(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is right child of its parent
                       Left-rotation required */
                    this.rotateLeft(grandParent!);
                    this.swapColor(parent!, grandParent!);
                    pt = parent!;
                }
            }
        }
        this.root!.color = 1;
    }

    delete(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        node.count--;
        if (!node.count) this.deleteNode(node);
        return true;
    }

    deleteAll(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        this.deleteNode(node);
        return true;
    }

    deleteNode(v: RBTreeNode<T>): void {
        const u = BSTreplace(v);

        // True when u and v are both black
        const uvBlack = (u === null || u.color === 1) && v.color === 1;
        const parent = v.parent!;

        if (!u) {
            // u is null therefore v is leaf
            if (v === this.root) this.root = null;
            // v is root, making root null
            else {
                if (uvBlack) {
                    // u and v both black
                    // v is leaf, fix double black at v
                    this.fixDoubleBlack(v);
                } else {
                    // u or v is red
                    if (v.sibling()) {
                        // sibling is not null, make it red"
                        v.sibling()!.color = 0;
                    }
                }
                // delete v from the tree
                if (v.isOnLeft()) parent.left = null;
                else parent.right = null;
            }
            return;
        }

        if (!v.left || !v.right) {
            // v has 1 child
            if (v === this.root) {
                // v is root, assign the value of u to v, and delete u
                v.data = u.data;
                v.left = v.right = null;
            } else {
                // Detach v from tree and move u up
                if (v.isOnLeft()) parent.left = u;
                else parent.right = u;
                u.parent = parent;
                if (uvBlack) this.fixDoubleBlack(u);
                // u and v both black, fix double black at u
                else u.color = 1; // u or v red, color u black
            }
            return;
        }

        // v has 2 children, swap data with successor and recurse
        this.swapData(u, v);
        this.deleteNode(u);

        // find node that replaces a deleted node in BST
        function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
            // when node have 2 children
            if (x.left && x.right) return successor(x.right);
            // when leaf
            if (!x.left && !x.right) return null;
            // when single child
            return x.left ?? x.right;
        }
        // find node that do not have a left child
        // in the subtree of the given node
        function successor(x: RBTreeNode<T>): RBTreeNode<T> {
            let temp = x;
            while (temp.left) temp = temp.left;
            return temp;
        }
    }

    fixDoubleBlack(x: RBTreeNode<T>): void {
        if (x === this.root) return; // Reached root

        const sibling = x.sibling();
        const parent = x.parent!;
        if (!sibling) {
            // No sibiling, double black pushed up
            this.fixDoubleBlack(parent);
        } else {
            if (sibling.color === 0) {
                // Sibling red
                parent.color = 0;
                sibling.color = 1;
                if (sibling.isOnLeft()) this.rotateRight(parent);
                // left case
                else this.rotateLeft(parent); // right case
                this.fixDoubleBlack(x);
            } else {
                // Sibling black
                if (sibling.hasRedChild()) {
                    // at least 1 red children
                    if (sibling.left && sibling.left.color === 0) {
                        if (sibling.isOnLeft()) {
                            // left left
                            sibling.left.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateRight(parent);
                        } else {
                            // right left
                            sibling.left.color = parent.color;
                            this.rotateRight(sibling);
                            this.rotateLeft(parent);
                        }
                    } else {
                        if (sibling.isOnLeft()) {
                            // left right
                            sibling.right!.color = parent.color;
                            this.rotateLeft(sibling);
                            this.rotateRight(parent);
                        } else {
                            // right right
                            sibling.right!.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateLeft(parent);
                        }
                    }
                    parent.color = 1;
                } else {
                    // 2 black children
                    sibling.color = 0;
                    if (parent.color === 1) this.fixDoubleBlack(parent);
                    else parent.color = 1;
                }
            }
        }
    }

    insert(data: T): boolean {
        // search for a position to insert
        let parent = this.root;
        while (parent) {
            if (this.lt(data, parent.data)) {
                if (!parent.left) break;
                else parent = parent.left;
            } else if (this.lt(parent.data, data)) {
                if (!parent.right) break;
                else parent = parent.right;
            } else break;
        }

        // insert node into parent
        const node = new RBTreeNode(data);
        if (!parent) this.root = node;
        else if (this.lt(node.data, parent.data)) parent.left = node;
        else if (this.lt(parent.data, node.data)) parent.right = node;
        else {
            parent.count++;
            return false;
        }
        node.parent = parent;
        this.fixAfterInsert(node);
        return true;
    }

    find(data: T): RBTreeNode<T> | null {
        let p = this.root;
        while (p) {
            if (this.lt(data, p.data)) {
                p = p.left;
            } else if (this.lt(p.data, data)) {
                p = p.right;
            } else break;
        }
        return p ?? null;
    }

    *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.inOrder(root.left!)) yield v;
        yield root.data;
        for (const v of this.inOrder(root.right!)) yield v;
    }

    *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.reverseInOrder(root.right!)) yield v;
        yield root.data;
        for (const v of this.reverseInOrder(root.left!)) yield v;
    }
}

class TreeSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size += successful ? 1 : 0;
        return successful;
    }

    delete(val: T): boolean {
        const deleted = this.tree.deleteAll(val);
        this._size -= deleted ? 1 : 0;
        return deleted;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) yield val;
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) yield val;
        return undefined;
    }
}

class TreeMultiSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size++;
        return successful;
    }

    delete(val: T): boolean {
        const successful = this.tree.delete(val);
        if (!successful) return false;
        this._size--;
        return true;
    }

    count(val: T): number {
        const node = this.tree.find(val);
        return node ? node.count : 0;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        yield* this.values();
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the multi-set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }
}

方法二

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
function minReverseOperations(n: number, p: number, banned: number[], k: number): number[] {
    const ans = new Array(n).fill(-1);
    const ts = new Array(2).fill(0).map(() => new TreapMultiSet<number>());
    for (let i = 0; i < n; ++i) {
        ts[i % 2].add(i);
    }
    ans[p] = 0;
    ts[p % 2].delete(p);
    for (const i of banned) {
        ts[i % 2].delete(i);
    }
    ts[0].add(n);
    ts[1].add(n);
    let q = [p];
    while (q.length) {
        const t: number[] = [];
        for (const i of q) {
            const mi = Math.max(i - k + 1, k - i - 1);
            const mx = Math.min(i + k - 1, n * 2 - k - i - 1);
            const s = ts[mi % 2];
            for (let j = s.ceil(mi)!; j <= mx; j = s.ceil(j)!) {
                t.push(j);
                ans[j] = ans[i] + 1;
                s.delete(j);
            }
        }
        q = t;
    }
    return ans;
}

type CompareFunction<T, R extends 'number' | 'boolean'> = (
    a: T,
    b: T,
) => R extends 'number' ? number : boolean;

interface ITreapMultiSet<T> extends Iterable<T> {
    add: (...value: T[]) => this;
    has: (value: T) => boolean;
    delete: (value: T) => void;

    bisectLeft: (value: T) => number;
    bisectRight: (value: T) => number;

    indexOf: (value: T) => number;
    lastIndexOf: (value: T) => number;

    at: (index: number) => T | undefined;
    first: () => T | undefined;
    last: () => T | undefined;

    lower: (value: T) => T | undefined;
    higher: (value: T) => T | undefined;
    floor: (value: T) => T | undefined;
    ceil: (value: T) => T | undefined;

    shift: () => T | undefined;
    pop: (index?: number) => T | undefined;

    count: (value: T) => number;

    keys: () => IterableIterator<T>;
    values: () => IterableIterator<T>;
    rvalues: () => IterableIterator<T>;
    entries: () => IterableIterator<[number, T]>;

    readonly size: number;
}

class TreapNode<T = number> {
    value: T;
    count: number;
    size: number;
    priority: number;
    left: TreapNode<T> | null;
    right: TreapNode<T> | null;

    constructor(value: T) {
        this.value = value;
        this.count = 1;
        this.size = 1;
        this.priority = Math.random();
        this.left = null;
        this.right = null;
    }

    static getSize(node: TreapNode<any> | null): number {
        return node?.size ?? 0;
    }

    static getFac(node: TreapNode<any> | null): number {
        return node?.priority ?? 0;
    }

    pushUp(): void {
        let tmp = this.count;
        tmp += TreapNode.getSize(this.left);
        tmp += TreapNode.getSize(this.right);
        this.size = tmp;
    }

    rotateRight(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const left = node.left;
        node.left = left?.right ?? null;
        left && (left.right = node);
        left && (node = left);
        node.right?.pushUp();
        node.pushUp();
        return node;
    }

    rotateLeft(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const right = node.right;
        node.right = right?.left ?? null;
        right && (right.left = node);
        right && (node = right);
        node.left?.pushUp();
        node.pushUp();
        return node;
    }
}

class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
    private readonly root: TreapNode<T>;
    private readonly compareFn: CompareFunction<T, 'number'>;
    private readonly leftBound: T;
    private readonly rightBound: T;

    constructor(compareFn?: CompareFunction<T, 'number'>);
    constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
    constructor(
        compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
        leftBound: any = -Infinity,
        rightBound: any = Infinity,
    ) {
        this.root = new TreapNode<T>(rightBound);
        this.root.priority = Infinity;
        this.root.left = new TreapNode<T>(leftBound);
        this.root.left.priority = -Infinity;
        this.root.pushUp();

        this.leftBound = leftBound;
        this.rightBound = rightBound;
        this.compareFn = compareFn;
    }

    get size(): number {
        return this.root.size - 2;
    }

    get height(): number {
        const getHeight = (node: TreapNode<T> | null): number => {
            if (node == null) return 0;
            return 1 + Math.max(getHeight(node.left), getHeight(node.right));
        };

        return getHeight(this.root);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns true if value is a member.
     */
    has(value: T): boolean {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): boolean => {
            if (node == null) return false;
            if (compare(node.value, value) === 0) return true;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Add value to sorted set.
     */
    add(...values: T[]): this {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;
            if (compare(node.value, value) === 0) {
                node.count++;
                node.pushUp();
            } else if (compare(node.value, value) > 0) {
                if (node.left) {
                    dfs(node.left, value, node, 'left');
                } else {
                    node.left = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.left) > node.priority) {
                    parent[direction] = node.rotateRight();
                }
            } else if (compare(node.value, value) < 0) {
                if (node.right) {
                    dfs(node.right, value, node, 'right');
                } else {
                    node.right = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.right) > node.priority) {
                    parent[direction] = node.rotateLeft();
                }
            }
            parent.pushUp();
        };

        values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
        return this;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Remove value from sorted set if it is a member.
     * If value is not a member, do nothing.
     */
    delete(value: T): void {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;

            if (compare(node.value, value) === 0) {
                if (node.count > 1) {
                    node.count--;
                    node?.pushUp();
                } else if (node.left == null && node.right == null) {
                    parent[direction] = null;
                } else {
                    // 旋到根节点
                    if (
                        node.right == null ||
                        TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
                    ) {
                        parent[direction] = node.rotateRight();
                        dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
                    } else {
                        parent[direction] = node.rotateLeft();
                        dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
                    }
                }
            } else if (compare(node.value, value) > 0) {
                dfs(node.left, value, node, 'left');
            } else if (compare(node.value, value) < 0) {
                dfs(node.right, value, node, 'right');
            }

            parent?.pushUp();
        };

        dfs(this.root.left, value, this.root, 'left');
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the left of) any existing values.
     */
    bisectLeft(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the right of) any existing values.
     */
    bisectRight(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left) + node.count;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
     */
    indexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
     */
    lastIndexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left) + node.count - 1;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the item located at the specified index.
     * @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
     */
    at(index: number): T | undefined {
        if (index < 0) index += this.size;
        if (index < 0 || index >= this.size) return undefined;

        const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
            if (node == null) return undefined;

            if (TreapNode.getSize(node.left) >= rank) {
                return dfs(node.left, rank);
            } else if (TreapNode.getSize(node.left) + node.count >= rank) {
                return node.value;
            } else {
                return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
            }
        };

        const res = dfs(this.root, index + 2);
        return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than `val`, return `undefined` if no such element found.
     */
    lower(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than `val`, return `undefined` if no such element found.
     */
    higher(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
     */
    floor(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
     */
    ceil(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned.
     */
    first(): T | undefined {
        const iter = this.inOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned .
     */
    last(): T | undefined {
        const iter = this.reverseInOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.leftBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the first element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the last element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    pop(index?: number): T | undefined {
        if (index == null) {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }

        const toDelete = this.at(index);
        if (toDelete == null) return;
        this.delete(toDelete);
        return toDelete;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description
     * Returns number of occurrences of value in the sorted set.
     */
    count(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;
            if (compare(node.value, value) === 0) return node.count;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    *[Symbol.iterator](): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of keys in the set.
     */
    *keys(): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of values in the set.
     */
    *values(): Generator<T, any, any> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns a generator for reversed order traversing the set.
     */
    *rvalues(): Generator<T, any, any> {
        const iter = this.reverseInOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns an iterable of key, value pairs for every entry in the set.
     */
    *entries(): IterableIterator<[number, T]> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let i = 0; i < steps; i++) {
            yield [i, iter.next().value];
        }
    }

    private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.inOrder(root.left);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.inOrder(root.right);
    }

    private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.reverseInOrder(root.right);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.reverseInOrder(root.left);
    }
}

评论