题目描述
在 X轴 上有一些奖品。给你一个整数数组 prizePositions
,它按照 非递减 顺序排列,其中 prizePositions[i]
是第 i
件奖品的位置。数轴上一个位置可能会有多件奖品。再给你一个整数 k
。
你可以同时选择两个端点为整数的线段。每个线段的长度都必须是 k
。你可以获得位置在任一线段上的所有奖品(包括线段的两个端点)。注意,两个线段可能会有相交。
- 比方说
k = 2
,你可以选择线段 [1, 3]
和 [2, 4]
,你可以获得满足 1 <= prizePositions[i] <= 3
或者 2 <= prizePositions[i] <= 4
的所有奖品 i 。
请你返回在选择两个最优线段的前提下,可以获得的 最多 奖品数目。
示例 1:
输入:prizePositions = [1,1,2,2,3,3,5], k = 2
输出:7
解释:这个例子中,你可以选择线段 [1, 3] 和 [3, 5] ,获得 7 个奖品。
示例 2:
输入:prizePositions = [1,2,3,4], k = 0
输出:2
解释:这个例子中,一个选择是选择线段 [3, 3] 和 [4, 4] ,获得 2 个奖品。
提示:
1 <= prizePositions.length <= 105
1 <= prizePositions[i] <= 109
0 <= k <= 109
prizePositions
有序非递减。
解法
方法一:动态规划 + 二分查找
我们定义 $f[i]$ 表示在前 $i$ 个奖品中,选择一个长度为 $k$ 的线段,可以获得的最多奖品数目。初始时 $f[0] = 0$。定义答案变量 $ans = 0$。
接下来,我们枚举每个奖品的位置 $x$,通过二分查找,找到最左边的奖品下标 $j$,使得 $prizePositions[j] \geq x - k$。此时,我们更新答案 $ans = \max(ans, f[j] + i - j)$,并更新 $f[i] = \max(f[i - 1], i - j)$。
最后,返回 $ans$ 即可。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为奖品数目。
| class Solution:
def maximizeWin(self, prizePositions: List[int], k: int) -> int:
n = len(prizePositions)
f = [0] * (n + 1)
ans = 0
for i, x in enumerate(prizePositions, 1):
j = bisect_left(prizePositions, x - k)
ans = max(ans, f[j] + i - j)
f[i] = max(f[i - 1], i - j)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public int maximizeWin(int[] prizePositions, int k) {
int n = prizePositions.length;
int[] f = new int[n + 1];
int ans = 0;
for (int i = 1; i <= n; ++i) {
int x = prizePositions[i - 1];
int j = search(prizePositions, x - k);
ans = Math.max(ans, f[j] + i - j);
f[i] = Math.max(f[i - 1], i - j);
}
return ans;
}
private int search(int[] nums, int x) {
int left = 0, right = nums.length;
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution {
public:
int maximizeWin(vector<int>& prizePositions, int k) {
int n = prizePositions.size();
vector<int> f(n + 1);
int ans = 0;
for (int i = 1; i <= n; ++i) {
int x = prizePositions[i - 1];
int j = lower_bound(prizePositions.begin(), prizePositions.end(), x - k) - prizePositions.begin();
ans = max(ans, f[j] + i - j);
f[i] = max(f[i - 1], i - j);
}
return ans;
}
};
|
| func maximizeWin(prizePositions []int, k int) (ans int) {
n := len(prizePositions)
f := make([]int, n+1)
for i, x := range prizePositions {
j := sort.Search(n, func(h int) bool { return prizePositions[h] >= x-k })
ans = max(ans, f[j]+i-j+1)
f[i+1] = max(f[i], i-j+1)
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | function maximizeWin(prizePositions: number[], k: number): number {
const n = prizePositions.length;
const f: number[] = Array(n + 1).fill(0);
let ans = 0;
const search = (x: number): number => {
let left = 0;
let right = n;
while (left < right) {
const mid = (left + right) >> 1;
if (prizePositions[mid] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
};
for (let i = 1; i <= n; ++i) {
const x = prizePositions[i - 1];
const j = search(x - k);
ans = Math.max(ans, f[j] + i - j);
f[i] = Math.max(f[i - 1], i - j);
}
return ans;
}
|