题目描述
给你一个下标从 0 开始长度为 n
的整数数组 stations
,其中 stations[i]
表示第 i
座城市的供电站数目。
每个供电站可以在一定 范围 内给所有城市提供电力。换句话说,如果给定的范围是 r
,在城市 i
处的供电站可以给所有满足 |i - j| <= r
且 0 <= i, j <= n - 1
的城市 j
供电。
|x|
表示 x
的 绝对值 。比方说,|7 - 5| = 2
,|3 - 10| = 7
。
一座城市的 电量 是所有能给它供电的供电站数目。
政府批准了可以额外建造 k
座供电站,你需要决定这些供电站分别应该建在哪里,这些供电站与已经存在的供电站有相同的供电范围。
给你两个整数 r
和 k
,如果以最优策略建造额外的发电站,返回所有城市中,最小电量的最大值是多少。
这 k
座供电站可以建在多个城市。
示例 1:
输入:stations = [1,2,4,5,0], r = 1, k = 2
输出:5
解释:
最优方案之一是把 2 座供电站都建在城市 1 。
每座城市的供电站数目分别为 [1,4,4,5,0] 。
- 城市 0 的供电站数目为 1 + 4 = 5 。
- 城市 1 的供电站数目为 1 + 4 + 4 = 9 。
- 城市 2 的供电站数目为 4 + 4 + 5 = 13 。
- 城市 3 的供电站数目为 5 + 4 = 9 。
- 城市 4 的供电站数目为 5 + 0 = 5 。
供电站数目最少是 5 。
无法得到更优解,所以我们返回 5 。
示例 2:
输入:stations = [4,4,4,4], r = 0, k = 3
输出:4
解释:
无论如何安排,总有一座城市的供电站数目是 4 ,所以最优解是 4 。
提示:
n == stations.length
1 <= n <= 105
0 <= stations[i] <= 105
0 <= r <= n - 1
0 <= k <= 109
解法
方法一:二分查找 + 差分数组 + 贪心
根据题目描述,最小供电站数目随着 $k$ 值的增大而增大,因此,我们可以用二分查找,找到一个最大的最小供电站数目,并且需要额外建造的供电站不超过 $k$ 座。
我们先利用差分数组以及前缀和算出初始时每座城市的供电站数目,记录在数组 $s$ 中,其中 $s[i]$ 表示第 $i$ 座城市的供电站数目。
接下来,我们定义二分查找的左边界为 $0$,右边界为 $2^{40}$。然后实现一个 $check(x, k)$ 函数,用于判断是否城市供电站数目的最小值是否可以为 $x$,使得额外建造的供电站不超过 $k$ 座。
函数 $check(x, k)$ 的实现逻辑是:
遍历每座城市,如果当前城市 $i$ 的供电站数目小于 $x$,此时我们可以贪心地在尽可能右边的位置上建造供电站,位置 $j = \min(i + r, n - 1)$,这样可以使得供电站覆盖尽可能多的城市。过程中我们可以借助差分数组,给一段连续的位置加上某个值。如果需要额外建造的供电站数量超过 $k$,那么 $x$ 不满足条件,返回 false
。否则遍历结束后,返回 true
。
时间复杂度 $O(n \times \log M)$,空间复杂度 $O(n)$。其中 $n$ 为城市数量,而 $M$ 我们固定取 $2^{40}$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | class Solution:
def maxPower(self, stations: List[int], r: int, k: int) -> int:
def check(x, k):
d = [0] * (n + 1)
t = 0
for i in range(n):
t += d[i]
dist = x - (s[i] + t)
if dist > 0:
if k < dist:
return False
k -= dist
j = min(i + r, n - 1)
left, right = max(0, j - r), min(j + r, n - 1)
d[left] += dist
d[right + 1] -= dist
t += dist
return True
n = len(stations)
d = [0] * (n + 1)
for i, v in enumerate(stations):
left, right = max(0, i - r), min(i + r, n - 1)
d[left] += v
d[right + 1] -= v
s = list(accumulate(d))
left, right = 0, 1 << 40
while left < right:
mid = (left + right + 1) >> 1
if check(mid, k):
left = mid
else:
right = mid - 1
return left
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 | class Solution {
private long[] s;
private long[] d;
private int n;
public long maxPower(int[] stations, int r, int k) {
n = stations.length;
d = new long[n + 1];
s = new long[n + 1];
for (int i = 0; i < n; ++i) {
int left = Math.max(0, i - r), right = Math.min(i + r, n - 1);
d[left] += stations[i];
d[right + 1] -= stations[i];
}
s[0] = d[0];
for (int i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
long left = 0, right = 1l << 40;
while (left < right) {
long mid = (left + right + 1) >>> 1;
if (check(mid, r, k)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
private boolean check(long x, int r, int k) {
Arrays.fill(d, 0);
long t = 0;
for (int i = 0; i < n; ++i) {
t += d[i];
long dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
int j = Math.min(i + r, n - 1);
int left = Math.max(0, j - r), right = Math.min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 | class Solution {
public:
long long maxPower(vector<int>& stations, int r, int k) {
int n = stations.size();
long d[n + 1];
memset(d, 0, sizeof d);
for (int i = 0; i < n; ++i) {
int left = max(0, i - r), right = min(i + r, n - 1);
d[left] += stations[i];
d[right + 1] -= stations[i];
}
long s[n + 1];
s[0] = d[0];
for (int i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
auto check = [&](long x, int k) {
memset(d, 0, sizeof d);
long t = 0;
for (int i = 0; i < n; ++i) {
t += d[i];
long dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
int j = min(i + r, n - 1);
int left = max(0, j - r), right = min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
};
long left = 0, right = 1e12;
while (left < right) {
long mid = (left + right + 1) >> 1;
if (check(mid, k)) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | func maxPower(stations []int, r int, k int) int64 {
n := len(stations)
d := make([]int, n+1)
s := make([]int, n+1)
for i, v := range stations {
left, right := max(0, i-r), min(i+r, n-1)
d[left] += v
d[right+1] -= v
}
s[0] = d[0]
for i := 1; i < n+1; i++ {
s[i] = s[i-1] + d[i]
}
check := func(x, k int) bool {
d := make([]int, n+1)
t := 0
for i := range stations {
t += d[i]
dist := x - (s[i] + t)
if dist > 0 {
if k < dist {
return false
}
k -= dist
j := min(i+r, n-1)
left, right := max(0, j-r), min(j+r, n-1)
d[left] += dist
d[right+1] -= dist
t += dist
}
}
return true
}
left, right := 0, 1<<40
for left < right {
mid := (left + right + 1) >> 1
if check(mid, k) {
left = mid
} else {
right = mid - 1
}
}
return int64(left)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | function maxPower(stations: number[], r: number, k: number): number {
function check(x: bigint, k: bigint): boolean {
d.fill(0n);
let t = 0n;
for (let i = 0; i < n; ++i) {
t += d[i];
const dist = x - (s[i] + t);
if (dist > 0) {
if (k < dist) {
return false;
}
k -= dist;
const j = Math.min(i + r, n - 1);
const left = Math.max(0, j - r);
const right = Math.min(j + r, n - 1);
d[left] += dist;
d[right + 1] -= dist;
t += dist;
}
}
return true;
}
const n = stations.length;
const d: bigint[] = new Array(n + 1).fill(0n);
const s: bigint[] = new Array(n + 1).fill(0n);
for (let i = 0; i < n; ++i) {
const left = Math.max(0, i - r);
const right = Math.min(i + r, n - 1);
d[left] += BigInt(stations[i]);
d[right + 1] -= BigInt(stations[i]);
}
s[0] = d[0];
for (let i = 1; i < n + 1; ++i) {
s[i] = s[i - 1] + d[i];
}
let left = 0n,
right = 1n << 40n;
while (left < right) {
const mid = (left + right + 1n) >> 1n;
if (check(mid, BigInt(k))) {
left = mid;
} else {
right = mid - 1n;
}
}
return Number(left);
}
|