题目描述
给定一个 下标从0开始 的整数数组 nums
和一个正整数 k
。
如果满足以下条件,我们称下标 i
为 k-big :
- 存在至少
k
个不同的索引 idx1
,满足 idx1 < i
且 nums[idx1] < nums[i]
。
- 存在至少
k
个不同的索引 idx2
,满足 idx2 > i
且 nums[idx2] < nums[i]
。
返回 k-big 索引的数量。
示例 1 :
输入:nums = [2,3,6,5,2,3], k = 2
输出:2
解释:在nums中只有两个 2-big 的索引:
- i = 2 --> 有两个有效的 idx1: 0 和 1。有三个有效的 idx2: 2、3 和 4。
- i = 3 --> 有两个有效的 idx1: 0 和 1。有两个有效的 idx2: 3 和 4。
示例 2 :
输入:nums = [1,1,1], k = 3
输出:0
解释:在 nums 中没有 3-big 的索引
提示:
1 <= nums.length <= 105
1 <= nums[i], k <= nums.length
解法
方法一:树状数组
我们维护两个树状数组,一个记录当前位置左边小于当前位置的数的个数,另一个记录当前位置右边小于当前位置的数的个数。
遍历数组,对于当前位置,如果左边小于当前位置的数的个数大于等于 $k$,且右边小于当前位置的数的个数大于等于 $k$,则当前位置是 $k-big$,答案加一。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += x & -x
def query(self, x):
s = 0
while x:
s += self.c[x]
x -= x & -x
return s
class Solution:
def kBigIndices(self, nums: List[int], k: int) -> int:
n = len(nums)
tree1 = BinaryIndexedTree(n)
tree2 = BinaryIndexedTree(n)
for v in nums:
tree2.update(v, 1)
ans = 0
for v in nums:
tree2.update(v, -1)
ans += tree1.query(v - 1) >= k and tree2.query(v - 1) >= k
tree1.update(v, 1)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += x & -x;
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= x & -x;
}
return s;
}
}
class Solution {
public int kBigIndices(int[] nums, int k) {
int n = nums.length;
BinaryIndexedTree tree1 = new BinaryIndexedTree(n);
BinaryIndexedTree tree2 = new BinaryIndexedTree(n);
for (int v : nums) {
tree2.update(v, 1);
}
int ans = 0;
for (int v : nums) {
tree2.update(v, -1);
if (tree1.query(v - 1) >= k && tree2.query(v - 1) >= k) {
++ans;
}
tree1.update(v, 1);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | class BinaryIndexedTree {
public:
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += x & -x;
}
}
int query(int x) {
int s = 0;
while (x) {
s += c[x];
x -= x & -x;
}
return s;
}
private:
int n;
vector<int> c;
};
class Solution {
public:
int kBigIndices(vector<int>& nums, int k) {
int n = nums.size();
BinaryIndexedTree* tree1 = new BinaryIndexedTree(n);
BinaryIndexedTree* tree2 = new BinaryIndexedTree(n);
for (int& v : nums) {
tree2->update(v, 1);
}
int ans = 0;
for (int& v : nums) {
tree2->update(v, -1);
ans += tree1->query(v - 1) >= k && tree2->query(v - 1) >= k;
tree1->update(v, 1);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += x & -x
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= x & -x
}
return s
}
func kBigIndices(nums []int, k int) (ans int) {
n := len(nums)
tree1 := newBinaryIndexedTree(n)
tree2 := newBinaryIndexedTree(n)
for _, v := range nums {
tree2.update(v, 1)
}
for _, v := range nums {
tree2.update(v, -1)
if tree1.query(v-1) >= k && tree2.query(v-1) >= k {
ans++
}
tree1.update(v, 1)
}
return
}
|