跳转至

2513. 最小化两个数组中的最大值

题目描述

给你两个数组 arr1 和 arr2 ,它们一开始都是空的。你需要往它们中添加正整数,使它们满足以下条件:

  • arr1 包含 uniqueCnt1 个 互不相同 的正整数,每个整数都 不能 被 divisor1 整除 。
  • arr2 包含 uniqueCnt2 个 互不相同 的正整数,每个整数都 不能 被 divisor2 整除 。
  • arr1 和 arr2 中的元素 互不相同 。

给你 divisor1 ,divisor2 ,uniqueCnt1 和 uniqueCnt2 ,请你返回两个数组中 最大元素 的 最小值 。

 

示例 1:

输入:divisor1 = 2, divisor2 = 7, uniqueCnt1 = 1, uniqueCnt2 = 3
输出:4
解释:
我们可以把前 4 个自然数划分到 arr1 和 arr2 中。
arr1 = [1] 和 arr2 = [2,3,4] 。
可以看出两个数组都满足条件。
最大值是 4 ,所以返回 4 。

示例 2:

输入:divisor1 = 3, divisor2 = 5, uniqueCnt1 = 2, uniqueCnt2 = 1
输出:3
解释:
arr1 = [1,2] 和 arr2 = [3] 满足所有条件。
最大值是 3 ,所以返回 3 。

示例 3:

输入:divisor1 = 2, divisor2 = 4, uniqueCnt1 = 8, uniqueCnt2 = 2
输出:15
解释:
最终数组为 arr1 = [1,3,5,7,9,11,13,15] 和 arr2 = [2,6] 。
上述方案是满足所有条件的最优解。

 

提示:

  • 2 <= divisor1, divisor2 <= 105
  • 1 <= uniqueCnt1, uniqueCnt2 < 109
  • 2 <= uniqueCnt1 + uniqueCnt2 <= 109

解法

方法一

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
class Solution:
    def minimizeSet(
        self, divisor1: int, divisor2: int, uniqueCnt1: int, uniqueCnt2: int
    ) -> int:
        def f(x):
            cnt1 = x // divisor1 * (divisor1 - 1) + x % divisor1
            cnt2 = x // divisor2 * (divisor2 - 1) + x % divisor2
            cnt = x // divisor * (divisor - 1) + x % divisor
            return (
                cnt1 >= uniqueCnt1
                and cnt2 >= uniqueCnt2
                and cnt >= uniqueCnt1 + uniqueCnt2
            )

        divisor = lcm(divisor1, divisor2)
        return bisect_left(range(10**10), True, key=f)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
    public int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {
        long divisor = lcm(divisor1, divisor2);
        long left = 1, right = 10000000000L;
        while (left < right) {
            long mid = (left + right) >> 1;
            long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1;
            long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2;
            long cnt = mid / divisor * (divisor - 1) + mid % divisor;
            if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return (int) left;
    }

    private long lcm(int a, int b) {
        return (long) a * b / gcd(a, b);
    }

    private int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
    int minimizeSet(int divisor1, int divisor2, int uniqueCnt1, int uniqueCnt2) {
        long left = 1, right = 1e10;
        long divisor = lcm((long) divisor1, (long) divisor2);
        while (left < right) {
            long mid = (left + right) >> 1;
            long cnt1 = mid / divisor1 * (divisor1 - 1) + mid % divisor1;
            long cnt2 = mid / divisor2 * (divisor2 - 1) + mid % divisor2;
            long cnt = mid / divisor * (divisor - 1) + mid % divisor;
            if (cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1 + uniqueCnt2) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
func minimizeSet(divisor1 int, divisor2 int, uniqueCnt1 int, uniqueCnt2 int) int {
    divisor := lcm(divisor1, divisor2)
    left, right := 1, 10000000000
    for left < right {
        mid := (left + right) >> 1
        cnt1 := mid/divisor1*(divisor1-1) + mid%divisor1
        cnt2 := mid/divisor2*(divisor2-1) + mid%divisor2
        cnt := mid/divisor*(divisor-1) + mid%divisor
        if cnt1 >= uniqueCnt1 && cnt2 >= uniqueCnt2 && cnt >= uniqueCnt1+uniqueCnt2 {
            right = mid
        } else {
            left = mid + 1
        }
    }
    return left
}

func lcm(a, b int) int {
    return a * b / gcd(a, b)
}

func gcd(a, b int) int {
    if b == 0 {
        return a
    }
    return gcd(b, a%b)
}

评论