2455. 可被三整除的偶数的平均值
题目描述
给你一个由正整数组成的整数数组 nums
,返回其中可被 3
整除的所有偶数的平均值。
注意:n
个元素的平均值等于 n
个元素 求和 再除以 n
,结果 向下取整 到最接近的整数。
示例 1:
输入:nums = [1,3,6,10,12,15] 输出:9 解释:6 和 12 是可以被 3 整除的偶数。(6 + 12) / 2 = 9 。
示例 2:
输入:nums = [1,2,4,7,10] 输出:0 解释:不存在满足题目要求的整数,所以返回 0 。
提示:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
解法
方法一:模拟
我们注意到,可被 $3$ 整除的偶数一定是 $6$ 的倍数,因此我们只需要遍历数组,统计所有 $6$ 的倍数的和与个数,然后计算平均值即可。
时间复杂度 $O(n)$,其中 $n$ 是数组的长度。空间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 |
|
方法二
1 2 3 4 5 6 7 8 9 10 11 |
|