题目描述
给你两个下标从 0 开始的整数数组 nums1
和 nums2
,两个数组的大小都为 n
,同时给你一个整数 diff
,统计满足以下条件的 数对 (i, j)
:
0 <= i < j <= n - 1
且
nums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff
.
请你返回满足条件的 数对数目 。
示例 1:
输入:nums1 = [3,2,5], nums2 = [2,2,1], diff = 1
输出:3
解释:
总共有 3 个满足条件的数对:
1. i = 0, j = 1:3 - 2 <= 2 - 2 + 1 。因为 i < j 且 1 <= 1 ,这个数对满足条件。
2. i = 0, j = 2:3 - 5 <= 2 - 1 + 1 。因为 i < j 且 -2 <= 2 ,这个数对满足条件。
3. i = 1, j = 2:2 - 5 <= 2 - 1 + 1 。因为 i < j 且 -3 <= 2 ,这个数对满足条件。
所以,我们返回 3 。
示例 2:
输入:nums1 = [3,-1], nums2 = [-2,2], diff = -1
输出:0
解释:
没有满足条件的任何数对,所以我们返回 0 。
提示:
n == nums1.length == nums2.length
2 <= n <= 105
-104 <= nums1[i], nums2[i] <= 104
-104 <= diff <= 104
解法
方法一:树状数组
我们将题目的不等式转换一下,得到 $nums1[i] - nums2[i] \leq nums1[j] - nums2[j] + diff$,因此,如果我们对两个数组对应位置的元素求差值,得到另一个数组 $nums$,那么题目就转换为求 $nums$ 中满足 $nums[i] \leq nums[j] + diff$ 的数对数目。
我们可以从小到大枚举 $j$,找出前面有多少个数满足 $nums[i] \leq nums[j] + diff$,这样就可以求出数对数目。我们可以使用树状数组来维护前缀和,这样就可以在 $O(\log n)$ 的时间内求出前面有多少个数满足 $nums[i] \leq nums[j] + diff$。
时间复杂度 $O(n \times \log n)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class BinaryIndexedTree:
def __init__(self, n):
self.n = n
self.c = [0] * (n + 1)
@staticmethod
def lowbit(x):
return x & -x
def update(self, x, delta):
while x <= self.n:
self.c[x] += delta
x += BinaryIndexedTree.lowbit(x)
def query(self, x):
s = 0
while x:
s += self.c[x]
x -= BinaryIndexedTree.lowbit(x)
return s
class Solution:
def numberOfPairs(self, nums1: List[int], nums2: List[int], diff: int) -> int:
tree = BinaryIndexedTree(10**5)
ans = 0
for a, b in zip(nums1, nums2):
v = a - b
ans += tree.query(v + diff + 40000)
tree.update(v + 40000, 1)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 | class BinaryIndexedTree {
private int n;
private int[] c;
public BinaryIndexedTree(int n) {
this.n = n;
c = new int[n + 1];
}
public static final int lowbit(int x) {
return x & -x;
}
public void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
public int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
}
class Solution {
public long numberOfPairs(int[] nums1, int[] nums2, int diff) {
BinaryIndexedTree tree = new BinaryIndexedTree(100000);
long ans = 0;
for (int i = 0; i < nums1.length; ++i) {
int v = nums1[i] - nums2[i];
ans += tree.query(v + diff + 40000);
tree.update(v + 40000, 1);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | class BinaryIndexedTree {
public:
int n;
vector<int> c;
BinaryIndexedTree(int _n)
: n(_n)
, c(_n + 1) {}
void update(int x, int delta) {
while (x <= n) {
c[x] += delta;
x += lowbit(x);
}
}
int query(int x) {
int s = 0;
while (x > 0) {
s += c[x];
x -= lowbit(x);
}
return s;
}
int lowbit(int x) {
return x & -x;
}
};
class Solution {
public:
long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int diff) {
BinaryIndexedTree* tree = new BinaryIndexedTree(1e5);
long long ans = 0;
for (int i = 0; i < nums1.size(); ++i) {
int v = nums1[i] - nums2[i];
ans += tree->query(v + diff + 40000);
tree->update(v + 40000, 1);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | type BinaryIndexedTree struct {
n int
c []int
}
func newBinaryIndexedTree(n int) *BinaryIndexedTree {
c := make([]int, n+1)
return &BinaryIndexedTree{n, c}
}
func (this *BinaryIndexedTree) lowbit(x int) int {
return x & -x
}
func (this *BinaryIndexedTree) update(x, delta int) {
for x <= this.n {
this.c[x] += delta
x += this.lowbit(x)
}
}
func (this *BinaryIndexedTree) query(x int) int {
s := 0
for x > 0 {
s += this.c[x]
x -= this.lowbit(x)
}
return s
}
func numberOfPairs(nums1 []int, nums2 []int, diff int) int64 {
tree := newBinaryIndexedTree(100000)
ans := 0
for i := range nums1 {
v := nums1[i] - nums2[i]
ans += tree.query(v + diff + 40000)
tree.update(v+40000, 1)
}
return int64(ans)
}
|