2422. 使用合并操作将数组转换为回文序列 🔒
题目描述
给定一个由 正整数 组成的数组 nums
。
可以对阵列执行如下操作,次数不限:
- 选择任意两个 相邻 的元素并用它们的 和 替换 它们。
- 例如,如果
nums = [1,2,3,1]
,则可以应用一个操作使其变为[1,5,1]
。
- 例如,如果
返回将数组转换为 回文序列 所需的 最小 操作数。
示例 1:
输入: nums = [4,3,2,1,2,3,1] 输出: 2 解释: 我们可以通过以下 2 个操作将数组转换为回文: - 在数组的第 4 和第 5 个元素上应用该操作,nums 将等于 [4,3,2,3,3,1]. - 在数组的第 5 和第 6 个元素上应用该操作,nums 将等于 [4,3,2,3,4]. 数组 [4,3,2,3,4] 是一个回文序列。 可以证明,2 是所需的最小操作数。
示例 2:
输入: nums = [1,2,3,4] 输出: 3 解释: 我们在任意位置进行 3 次运算,最后得到数组 [10],它是一个回文序列。
提示:
1 <= nums.length <= 105
1 <= nums[i] <= 106
解法
方法一:贪心 + 双指针
定义两个指针 $i$ 和 $j$,分别指向数组的首尾,用变量 $a$ 和 $b$ 分别表示首尾两个元素的值,变量 $ans$ 表示操作次数。
如果 $a \lt b$,我们将指针 $i$ 向右移动一位,即 $i \leftarrow i + 1$,然后将 $a$ 加上指针 $i$ 指向的元素的值,即 $a \leftarrow a + nums[i]$,同时将操作次数加一,即 $ans \leftarrow ans + 1$。
如果 $a \gt b$,我们将指针 $j$ 向左移动一位,即 $j \leftarrow j - 1$,然后将 $b$ 加上指针 $j$ 指向的元素的值,即 $b \leftarrow b + nums[j]$,同时将操作次数加一,即 $ans \leftarrow ans + 1$。
否则,说明 $a = b$,此时我们将指针 $i$ 向右移动一位,即 $i \leftarrow i + 1$,将指针 $j$ 向左移动一位,即 $j \leftarrow j - 1$,并且更新 $a$ 和 $b$ 的值,即 $a \leftarrow nums[i]$ 以及 $b \leftarrow nums[j]$。
循环上述过程,直至指针 $i \ge j$,返回操作次数 $ans$ 即可。
时间复杂度 $O(n)$,其中 $n$ 为数组的长度。空间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|