2412. 完成所有交易的初始最少钱数
题目描述
给你一个下标从 0 开始的二维整数数组 transactions
,其中transactions[i] = [costi, cashbacki]
。
数组描述了若干笔交易。其中每笔交易必须以 某种顺序 恰好完成一次。在任意一个时刻,你有一定数目的钱 money
,为了完成交易 i
,money >= costi
这个条件必须为真。执行交易后,你的钱数 money
变成 money - costi + cashbacki
。
请你返回 任意一种 交易顺序下,你都能完成所有交易的最少钱数 money
是多少。
示例 1:
输入:transactions = [[2,1],[5,0],[4,2]] 输出:10 解释: 刚开始 money = 10 ,交易可以以任意顺序进行。 可以证明如果 money < 10 ,那么某些交易无法进行。
示例 2:
输入:transactions = [[3,0],[0,3]] 输出:3 解释: - 如果交易执行的顺序是 [[3,0],[0,3]] ,完成所有交易需要的最少钱数是 3 。 - 如果交易执行的顺序是 [[0,3],[3,0]] ,完成所有交易需要的最少钱数是 0 。 所以,刚开始钱数为 3 ,任意顺序下交易都可以全部完成。
提示:
1 <= transactions.length <= 105
transactions[i].length == 2
0 <= costi, cashbacki <= 109
解法
方法一:贪心
我们先累计所有负收益,记为 $s$。然后枚举每个交易作为最后一个交易,如果 transactions[i].x > transactions[i].y
,说明当前的交易是亏钱的,而这个交易在此前我们累计负收益的时候,已经被计算,因此取 s + transactions[i].y
更新答案;否则,取 s + transactions[i].x
更新答案。
时间复杂度 $O(n)$,其中 $n$ 为交易数。空间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|