跳转至

2389. 和有限的最长子序列

题目描述

给你一个长度为 n 的整数数组 nums ,和一个长度为 m 的整数数组 queries

返回一个长度为 m 的数组 answer ,其中 answer[i] nums 元素之和小于等于 queries[i]子序列最大 长度 

子序列 是由一个数组删除某些元素(也可以不删除)但不改变剩余元素顺序得到的一个数组。

 

示例 1:

输入:nums = [4,5,2,1], queries = [3,10,21]
输出:[2,3,4]
解释:queries 对应的 answer 如下:
- 子序列 [2,1] 的和小于或等于 3 。可以证明满足题目要求的子序列的最大长度是 2 ,所以 answer[0] = 2 。
- 子序列 [4,5,1] 的和小于或等于 10 。可以证明满足题目要求的子序列的最大长度是 3 ,所以 answer[1] = 3 。
- 子序列 [4,5,2,1] 的和小于或等于 21 。可以证明满足题目要求的子序列的最大长度是 4 ,所以 answer[2] = 4 。

示例 2:

输入:nums = [2,3,4,5], queries = [1]
输出:[0]
解释:空子序列是唯一一个满足元素和小于或等于 1 的子序列,所以 answer[0] = 0 。

 

提示:

  • n == nums.length
  • m == queries.length
  • 1 <= n, m <= 1000
  • 1 <= nums[i], queries[i] <= 106

解法

方法一:排序 + 前缀和 + 二分查找

根据题目描述,对于每个 \(\textit{queries[i]}\),我们需要找到一个子序列,使得该子序列的元素和不超过 \(\textit{queries[i]}\),且该子序列的长度最大化。显然,我们应该选择尽可能小的元素,这样才能使得子序列的长度最大化。

因此,我们可以先将数组 \(\textit{nums}\) 进行升序排序,然后对于每个 \(\textit{queries[i]}\),我们可以使用二分查找,找到最小的下标 \(j\),使得 \(\textit{nums}[0] + \textit{nums}[1] + \cdots + \textit{nums}[j] > \textit{queries[i]}\)。此时 \(\textit{nums}[0] + \textit{nums}[1] + \cdots + \textit{nums}[j - 1]\) 就是满足条件的子序列的元素和,且该子序列的长度为 \(j\)。因此,我们可以将 \(j\) 加入答案数组中。

时间复杂度 \(O((n + m) \times \log n)\),空间复杂度 \(O(n)\)\(O(\log n)\)。其中 \(n\)\(m\) 分别是数组 \(\textit{nums}\)\(\textit{queries}\) 的长度。

1
2
3
4
5
class Solution:
    def answerQueries(self, nums: List[int], queries: List[int]) -> List[int]:
        nums.sort()
        s = list(accumulate(nums))
        return [bisect_right(s, q) for q in queries]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int[] answerQueries(int[] nums, int[] queries) {
        Arrays.sort(nums);
        for (int i = 1; i < nums.length; ++i) {
            nums[i] += nums[i - 1];
        }
        int m = queries.length;
        int[] ans = new int[m];
        for (int i = 0; i < m; ++i) {
            int j = Arrays.binarySearch(nums, queries[i] + 1);
            ans[i] = j < 0 ? -j - 1 : j;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    vector<int> answerQueries(vector<int>& nums, vector<int>& queries) {
        ranges::sort(nums);
        for (int i = 1; i < nums.size(); i++) {
            nums[i] += nums[i - 1];
        }
        vector<int> ans;
        for (const auto& q : queries) {
            ans.emplace_back(upper_bound(nums.begin(), nums.end(), q) - nums.begin());
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
func answerQueries(nums []int, queries []int) (ans []int) {
    sort.Ints(nums)
    for i := 1; i < len(nums); i++ {
        nums[i] += nums[i-1]
    }
    for _, q := range queries {
        ans = append(ans, sort.SearchInts(nums, q+1))
    }
    return
}
1
2
3
4
5
6
7
function answerQueries(nums: number[], queries: number[]): number[] {
    nums.sort((a, b) => a - b);
    for (let i = 1; i < nums.length; i++) {
        nums[i] += nums[i - 1];
    }
    return queries.map(q => _.sortedIndex(nums, q + 1));
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
impl Solution {
    pub fn answer_queries(mut nums: Vec<i32>, queries: Vec<i32>) -> Vec<i32> {
        nums.sort();

        for i in 1..nums.len() {
            nums[i] += nums[i - 1];
        }

        queries.iter().map(|&q| {
            match nums.binary_search(&q) {
                Ok(idx) => idx as i32 + 1,
                Err(idx) => idx as i32,
            }
        }).collect()
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
/**
 * @param {number[]} nums
 * @param {number[]} queries
 * @return {number[]}
 */
var answerQueries = function (nums, queries) {
    nums.sort((a, b) => a - b);
    for (let i = 1; i < nums.length; i++) {
        nums[i] += nums[i - 1];
    }
    return queries.map(q => _.sortedIndex(nums, q + 1));
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
public class Solution {
    public int[] AnswerQueries(int[] nums, int[] queries) {
        Array.Sort(nums);
        for (int i = 1; i < nums.Length; ++i) {
            nums[i] += nums[i - 1];
        }
        int m = queries.Length;
        int[] ans = new int[m];
        for (int i = 0; i < m; ++i) {
            int j = Array.BinarySearch(nums, queries[i] + 1);
            ans[i] = j < 0 ? -j - 1 : j;
        }
        return ans;
    }
}

方法二:排序 + 离线查询 + 双指针

与方法一类似,我们可以先对数组 \(nums\) 进行升序排列。

接下来,我们定义一个长度与 \(queries\) 相同的下标数组 \(idx\),其中 \(idx[i]=i\),然后我们对数组 \(idx\) 按照 \(queries\) 中的元素值进行升序排序。这样,我们就可以按照 \(queries\) 中的元素值从小到大的顺序进行处理。

我们使用一个变量 \(s\) 记录当前已经选择的元素的和,使用一个变量 \(j\) 记录当前已经选择的元素的个数。初始时 \(s = j = 0\)

我们遍历下标数组 \(idx\),对于其中的每个下标 \(i\),我们循环地将数组 \(nums\) 中的元素加入到当前的子序列中,直到 \(s + nums[j] \gt queries[i]\),此时 \(j\) 即为满足条件的子序列的长度,我们将 \(ans[i]\) 的值设为 \(j\),然后继续处理下一个下标。

遍历完下标数组 \(idx\) 后,我们即可得到答案数组 \(ans\),其中 \(ans[i]\) 即为满足 \(queries[i]\) 的子序列的长度。

时间复杂度 \(O(n \times \log n + m)\),空间复杂度 \(O(m)\)。其中 \(n\)\(m\) 分别是数组 \(nums\)\(queries\) 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution:
    def answerQueries(self, nums: List[int], queries: List[int]) -> List[int]:
        nums.sort()
        m = len(queries)
        ans = [0] * m
        idx = sorted(range(m), key=lambda i: queries[i])
        s = j = 0
        for i in idx:
            while j < len(nums) and s + nums[j] <= queries[i]:
                s += nums[j]
                j += 1
            ans[i] = j
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int[] answerQueries(int[] nums, int[] queries) {
        Arrays.sort(nums);
        int m = queries.length;
        Integer[] idx = new Integer[m];
        for (int i = 0; i < m; ++i) {
            idx[i] = i;
        }
        Arrays.sort(idx, (i, j) -> queries[i] - queries[j]);
        int[] ans = new int[m];
        int s = 0, j = 0;
        for (int i : idx) {
            while (j < nums.length && s + nums[j] <= queries[i]) {
                s += nums[j++];
            }
            ans[i] = j;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    vector<int> answerQueries(vector<int>& nums, vector<int>& queries) {
        sort(nums.begin(), nums.end());
        int m = queries.size();
        vector<int> idx(m);
        iota(idx.begin(), idx.end(), 0);
        sort(idx.begin(), idx.end(), [&](int i, int j) {
            return queries[i] < queries[j];
        });
        vector<int> ans(m);
        int s = 0, j = 0;
        for (int i : idx) {
            while (j < nums.size() && s + nums[j] <= queries[i]) {
                s += nums[j++];
            }
            ans[i] = j;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
func answerQueries(nums []int, queries []int) (ans []int) {
    sort.Ints(nums)
    m := len(queries)
    idx := make([]int, m)
    for i := range idx {
        idx[i] = i
    }
    sort.Slice(idx, func(i, j int) bool { return queries[idx[i]] < queries[idx[j]] })
    ans = make([]int, m)
    s, j := 0, 0
    for _, i := range idx {
        for j < len(nums) && s+nums[j] <= queries[i] {
            s += nums[j]
            j++
        }
        ans[i] = j
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
function answerQueries(nums: number[], queries: number[]): number[] {
    nums.sort((a, b) => a - b);
    const m = queries.length;
    const idx: number[] = new Array(m);
    for (let i = 0; i < m; i++) {
        idx[i] = i;
    }
    idx.sort((i, j) => queries[i] - queries[j]);
    const ans: number[] = new Array(m);
    let s = 0;
    let j = 0;
    for (const i of idx) {
        while (j < nums.length && s + nums[j] <= queries[i]) {
            s += nums[j++];
        }
        ans[i] = j;
    }
    return ans;
}

评论