2360. 图中的最长环
题目描述
给你一个 n
个节点的 有向图 ,节点编号为 0
到 n - 1
,其中每个节点 至多 有一条出边。
图用一个大小为 n
下标从 0 开始的数组 edges
表示,节点 i
到节点 edges[i]
之间有一条有向边。如果节点 i
没有出边,那么 edges[i] == -1
。
请你返回图中的 最长 环,如果没有任何环,请返回 -1
。
一个环指的是起点和终点是 同一个 节点的路径。
示例 1:
输入:edges = [3,3,4,2,3] 输出去:3 解释:图中的最长环是:2 -> 4 -> 3 -> 2 。 这个环的长度为 3 ,所以返回 3 。
示例 2:
输入:edges = [2,-1,3,1] 输出:-1 解释:图中没有任何环。
提示:
n == edges.length
2 <= n <= 105
-1 <= edges[i] < n
edges[i] != i
解法
方法一:遍历出发点
我们可以遍历 $[0,..,n-1]$ 范围内的每个节点,如果该节点未被访问过,则从该节点出发,搜索邻边节点,直到遇到环或者遇到已经访问过的节点。如果遇到环,则更新答案。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点数。
相似题目:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|