跳转至

2359. 找到离给定两个节点最近的节点

题目描述

给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,每个节点 至多 有一条出边。

有向图用大小为 n 下标从 0 开始的数组 edges 表示,表示节点 i 有一条有向边指向 edges[i] 。如果节点 i 没有出边,那么 edges[i] == -1 。

同时给你两个节点 node1 和 node2 。

请你返回一个从 node1 和 node2 都能到达节点的编号,使节点 node1 和节点 node2 到这个节点的距离 较大值最小化。如果有多个答案,请返回 最小 的节点编号。如果答案不存在,返回 -1 。

注意 edges 可能包含环。

 

示例 1:

输入:edges = [2,2,3,-1], node1 = 0, node2 = 1
输出:2
解释:从节点 0 到节点 2 的距离为 1 ,从节点 1 到节点 2 的距离为 1 。
两个距离的较大值为 1 。我们无法得到一个比 1 更小的较大值,所以我们返回节点 2 。

示例 2:

输入:edges = [1,2,-1], node1 = 0, node2 = 2
输出:2
解释:节点 0 到节点 2 的距离为 2 ,节点 2 到它自己的距离为 0 。
两个距离的较大值为 2 。我们无法得到一个比 2 更小的较大值,所以我们返回节点 2 。

 

提示:

  • n == edges.length
  • 2 <= n <= 105
  • -1 <= edges[i] < n
  • edges[i] != i
  • 0 <= node1, node2 < n

解法

方法一:BFS + 枚举公共点

我们可以先用 BFS 求出从 $node1$ 和 $node2$ 分别到达每个点的距离,分别记为 $d_1$ 和 $d_2$。然后枚举所有的公共点 $i$,然后求出 $\max(d_1[i], d_2[i])$,取其中的最小值即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为节点个数。

相似题目:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
        def dijkstra(i):
            dist = [inf] * n
            dist[i] = 0
            q = [(0, i)]
            while q:
                i = heappop(q)[1]
                for j in g[i]:
                    if dist[j] > dist[i] + 1:
                        dist[j] = dist[i] + 1
                        heappush(q, (dist[j], j))
            return dist

        g = defaultdict(list)
        for i, j in enumerate(edges):
            if j != -1:
                g[i].append(j)
        n = len(edges)
        d1 = dijkstra(node1)
        d2 = dijkstra(node2)
        ans, d = -1, inf
        for i, (a, b) in enumerate(zip(d1, d2)):
            if (t := max(a, b)) < d:
                d = t
                ans = i
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
    private int n;
    private List<Integer>[] g;

    public int closestMeetingNode(int[] edges, int node1, int node2) {
        n = edges.length;
        g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].add(edges[i]);
            }
        }
        int[] d1 = dijkstra(node1);
        int[] d2 = dijkstra(node2);
        int d = 1 << 30;
        int ans = -1;
        for (int i = 0; i < n; ++i) {
            int t = Math.max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }

    private int[] dijkstra(int i) {
        int[] dist = new int[n];
        Arrays.fill(dist, 1 << 30);
        dist[i] = 0;
        PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        q.offer(new int[] {0, i});
        while (!q.isEmpty()) {
            var p = q.poll();
            i = p[1];
            for (int j : g[i]) {
                if (dist[j] > dist[i] + 1) {
                    dist[j] = dist[i] + 1;
                    q.offer(new int[] {dist[j], j});
                }
            }
        }
        return dist;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class Solution {
public:
    int closestMeetingNode(vector<int>& edges, int node1, int node2) {
        int n = edges.size();
        vector<vector<int>> g(n);
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].push_back(edges[i]);
            }
        }
        const int inf = 1 << 30;
        using pii = pair<int, int>;
        auto dijkstra = [&](int i) {
            vector<int> dist(n, inf);
            dist[i] = 0;
            priority_queue<pii, vector<pii>, greater<pii>> q;
            q.emplace(0, i);
            while (!q.empty()) {
                auto p = q.top();
                q.pop();
                i = p.second;
                for (int j : g[i]) {
                    if (dist[j] > dist[i] + 1) {
                        dist[j] = dist[i] + 1;
                        q.emplace(dist[j], j);
                    }
                }
            }
            return dist;
        };
        vector<int> d1 = dijkstra(node1);
        vector<int> d2 = dijkstra(node2);
        int ans = -1, d = inf;
        for (int i = 0; i < n; ++i) {
            int t = max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
func closestMeetingNode(edges []int, node1 int, node2 int) int {
    n := len(edges)
    g := make([][]int, n)
    for i, j := range edges {
        if j != -1 {
            g[i] = append(g[i], j)
        }
    }
    const inf int = 1 << 30
    dijkstra := func(i int) []int {
        dist := make([]int, n)
        for j := range dist {
            dist[j] = inf
        }
        dist[i] = 0
        q := hp{}
        heap.Push(&q, pair{0, i})
        for len(q) > 0 {
            i := heap.Pop(&q).(pair).i
            for _, j := range g[i] {
                if dist[j] > dist[i]+1 {
                    dist[j] = dist[i] + 1
                    heap.Push(&q, pair{dist[j], j})
                }
            }
        }
        return dist
    }
    d1 := dijkstra(node1)
    d2 := dijkstra(node2)
    ans, d := -1, inf
    for i, a := range d1 {
        b := d2[i]
        t := max(a, b)
        if t < d {
            d = t
            ans = i
        }
    }
    return ans
}

type pair struct{ d, i int }
type hp []pair

func (h hp) Len() int           { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].d < h[j].d }
func (h hp) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)        { *h = append(*h, v.(pair)) }
func (h *hp) Pop() any          { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
function closestMeetingNode(edges: number[], node1: number, node2: number): number {
    const n = edges.length;
    const g = Array.from({ length: n }, () => []);
    for (let i = 0; i < n; ++i) {
        if (edges[i] != -1) {
            g[i].push(edges[i]);
        }
    }
    const inf = 1 << 30;
    const f = (i: number) => {
        const dist = new Array(n).fill(inf);
        dist[i] = 0;
        const q: number[] = [i];
        while (q.length) {
            i = q.shift();
            for (const j of g[i]) {
                if (dist[j] == inf) {
                    dist[j] = dist[i] + 1;
                    q.push(j);
                }
            }
        }
        return dist;
    };
    const d1 = f(node1);
    const d2 = f(node2);
    let ans = -1;
    let d = inf;
    for (let i = 0; i < n; ++i) {
        const t = Math.max(d1[i], d2[i]);
        if (t < d) {
            d = t;
            ans = i;
        }
    }
    return ans;
}

方法二

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def closestMeetingNode(self, edges: List[int], node1: int, node2: int) -> int:
        def f(i):
            dist = [inf] * n
            dist[i] = 0
            q = deque([i])
            while q:
                i = q.popleft()
                for j in g[i]:
                    if dist[j] == inf:
                        dist[j] = dist[i] + 1
                        q.append(j)
            return dist

        g = defaultdict(list)
        for i, j in enumerate(edges):
            if j != -1:
                g[i].append(j)
        n = len(edges)
        d1 = f(node1)
        d2 = f(node2)
        ans, d = -1, inf
        for i, (a, b) in enumerate(zip(d1, d2)):
            if (t := max(a, b)) < d:
                d = t
                ans = i
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class Solution {
    private int n;
    private List<Integer>[] g;

    public int closestMeetingNode(int[] edges, int node1, int node2) {
        n = edges.length;
        g = new List[n];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].add(edges[i]);
            }
        }
        int[] d1 = f(node1);
        int[] d2 = f(node2);
        int d = 1 << 30;
        int ans = -1;
        for (int i = 0; i < n; ++i) {
            int t = Math.max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }

    private int[] f(int i) {
        int[] dist = new int[n];
        Arrays.fill(dist, 1 << 30);
        dist[i] = 0;
        Deque<Integer> q = new ArrayDeque<>();
        q.offer(i);
        while (!q.isEmpty()) {
            i = q.poll();
            for (int j : g[i]) {
                if (dist[j] == 1 << 30) {
                    dist[j] = dist[i] + 1;
                    q.offer(j);
                }
            }
        }
        return dist;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Solution {
public:
    int closestMeetingNode(vector<int>& edges, int node1, int node2) {
        int n = edges.size();
        vector<vector<int>> g(n);
        for (int i = 0; i < n; ++i) {
            if (edges[i] != -1) {
                g[i].push_back(edges[i]);
            }
        }
        const int inf = 1 << 30;
        using pii = pair<int, int>;
        auto f = [&](int i) {
            vector<int> dist(n, inf);
            dist[i] = 0;
            queue<int> q{{i}};
            while (!q.empty()) {
                i = q.front();
                q.pop();
                for (int j : g[i]) {
                    if (dist[j] == inf) {
                        dist[j] = dist[i] + 1;
                        q.push(j);
                    }
                }
            }
            return dist;
        };
        vector<int> d1 = f(node1);
        vector<int> d2 = f(node2);
        int ans = -1, d = inf;
        for (int i = 0; i < n; ++i) {
            int t = max(d1[i], d2[i]);
            if (t < d) {
                d = t;
                ans = i;
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
func closestMeetingNode(edges []int, node1 int, node2 int) int {
    n := len(edges)
    g := make([][]int, n)
    for i, j := range edges {
        if j != -1 {
            g[i] = append(g[i], j)
        }
    }
    const inf int = 1 << 30
    f := func(i int) []int {
        dist := make([]int, n)
        for j := range dist {
            dist[j] = inf
        }
        dist[i] = 0
        q := []int{i}
        for len(q) > 0 {
            i = q[0]
            q = q[1:]
            for _, j := range g[i] {
                if dist[j] == inf {
                    dist[j] = dist[i] + 1
                    q = append(q, j)
                }
            }
        }
        return dist
    }
    d1 := f(node1)
    d2 := f(node2)
    ans, d := -1, inf
    for i, a := range d1 {
        b := d2[i]
        t := max(a, b)
        if t < d {
            d = t
            ans = i
        }
    }
    return ans
}

评论