2358. 分组的最大数量
题目描述
给你一个正整数数组 grades
,表示大学中一些学生的成绩。你打算将 所有 学生分为一些 有序 的非空分组,其中分组间的顺序满足以下全部条件:
- 第
i
个分组中的学生总成绩 小于 第(i + 1)
个分组中的学生总成绩,对所有组均成立(除了最后一组)。 - 第
i
个分组中的学生总数 小于 第(i + 1)
个分组中的学生总数,对所有组均成立(除了最后一组)。
返回可以形成的 最大 组数。
示例 1:
输入:grades = [10,6,12,7,3,5] 输出:3 解释:下面是形成 3 个分组的一种可行方法: - 第 1 个分组的学生成绩为 grades = [12] ,总成绩:12 ,学生数:1 - 第 2 个分组的学生成绩为 grades = [6,7] ,总成绩:6 + 7 = 13 ,学生数:2 - 第 3 个分组的学生成绩为 grades = [10,3,5] ,总成绩:10 + 3 + 5 = 18 ,学生数:3 可以证明无法形成超过 3 个分组。
示例 2:
输入:grades = [8,8] 输出:1 解释:只能形成 1 个分组,因为如果要形成 2 个分组的话,会导致每个分组中的学生数目相等。
提示:
1 <= grades.length <= 105
1 <= grades[i] <= 105
解法
方法一:贪心 + 二分查找
我们观察题目中的条件,第 $i$ 组的学生人数要小于第 $i+1$ 组的学生人数,且第 $i$ 组的学生总成绩要小于第 $i+1$ 组的学生总成绩,我们只需要将学生按照成绩从小到大排序,然后每一组依次分配 $1$, $2$, ..., $k$ 个学生即可。如果最后一组的学生人数不足 $k$ 个,那么我们可以将这些学生分配到前面的最后一组中。
因此,我们要找到最大的 $k$,使得 $\frac{(1 + k) \times k}{2} \leq n$,其中 $n$ 为学生的总人数。我们可以使用二分查找来求解。
我们定义二分查找的左边界为 $l = 1$,右边界为 $r = n$,每一次二分查找的中点为 $mid = \lfloor \frac{l + r + 1}{2} \rfloor$,如果 $(1 + mid) \times mid \gt 2 \times n$,则说明 $mid$ 太大,我们需要将右边界缩小至 $mid - 1$,否则我们需要将左边界增大至 $mid$。
最后,我们将 $l$ 作为答案返回即可。
时间复杂度 $O(\log n)$,空间复杂度 $O(1)$。其中 $n$ 为学生的总人数。
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|