232. 用栈实现队列
题目描述
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push
、pop
、peek
、empty
):
实现 MyQueue
类:
void push(int x)
将元素 x 推到队列的末尾int pop()
从队列的开头移除并返回元素int peek()
返回队列开头的元素boolean empty()
如果队列为空,返回true
;否则,返回false
说明:
- 你 只能 使用标准的栈操作 —— 也就是只有
push to top
,peek/pop from top
,size
, 和is empty
操作是合法的。 - 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
输入: ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] 输出: [null, null, null, 1, 1, false] 解释: MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: [1] myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is [2] myQueue.empty(); // return false
提示:
1 <= x <= 9
- 最多调用
100
次push
、pop
、peek
和empty
- 假设所有操作都是有效的 (例如,一个空的队列不会调用
pop
或者peek
操作)
进阶:
- 你能否实现每个操作均摊时间复杂度为
O(1)
的队列?换句话说,执行n
个操作的总时间复杂度为O(n)
,即使其中一个操作可能花费较长时间。
解法
方法一:双栈
我们使用两个栈,其中栈 stk1
用于入队,另一个栈 stk2
用于出队。
入队时,直接将元素入栈 stk1
。时间复杂度 $O(1)$。
出队时,先判断栈 stk2
是否为空,如果为空,则将栈 stk1
中的元素全部出栈并入栈 stk2
,然后再从栈 stk2
中出栈一个元素。如果栈 stk2
不为空,则直接从栈 stk2
中出栈一个元素。均摊时间复杂度 $O(1)$。
获取队首元素时,先判断栈 stk2
是否为空,如果为空,则将栈 stk1
中的元素全部出栈并入栈 stk2
,然后再从栈 stk2
中获取栈顶元素。如果栈 stk2
不为空,则直接从栈 stk2
中获取栈顶元素。均摊时间复杂度 $O(1)$。
判断队列是否为空时,只要判断两个栈是否都为空即可。时间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|