2319. 判断矩阵是否是一个 X 矩阵
题目描述
如果一个正方形矩阵满足下述 全部 条件,则称之为一个 X 矩阵 :
- 矩阵对角线上的所有元素都 不是 0
- 矩阵中所有其他元素都是 0
给你一个大小为 n x n
的二维整数数组 grid
,表示一个正方形矩阵。如果 grid
是一个 X 矩阵 ,返回 true
;否则,返回 false
。
示例 1:
输入:grid = [[2,0,0,1],[0,3,1,0],[0,5,2,0],[4,0,0,2]] 输出:true 解释:矩阵如上图所示。 X 矩阵应该满足:绿色元素(对角线上)都不是 0 ,红色元素都是 0 。 因此,grid 是一个 X 矩阵。
示例 2:
输入:grid = [[5,7,0],[0,3,1],[0,5,0]] 输出:false 解释:矩阵如上图所示。 X 矩阵应该满足:绿色元素(对角线上)都不是 0 ,红色元素都是 0 。 因此,grid 不是一个 X 矩阵。
提示:
n == grid.length == grid[i].length
3 <= n <= 100
0 <= grid[i][j] <= 105
解法
方法一:模拟
遍历矩阵,对于每个元素,判断其是否满足 $X$ 矩阵的条件。若不满足,直接返回 false
;若遍历完所有元素都满足,返回 true
。
时间复杂度 $O(n^2)$,空间复杂度 $O(1)$。其中 $n$ 为矩阵的行数或列数。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|