跳转至

23. 合并 K 个升序链表

题目描述

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

 

示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
  1->4->5,
  1->3->4,
  2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

示例 2:

输入:lists = []
输出:[]

示例 3:

输入:lists = [[]]
输出:[]

 

提示:

  • k == lists.length
  • 0 <= k <= 10^4
  • 0 <= lists[i].length <= 500
  • -10^4 <= lists[i][j] <= 10^4
  • lists[i]升序 排列
  • lists[i].length 的总和不超过 10^4

解法

方法一:优先队列(小根堆)

我们可以创建一个小根堆来 $pq$ 维护所有链表的头节点,每次从小根堆中取出值最小的节点,添加到结果链表的末尾,然后将该节点的下一个节点加入堆中,重复上述步骤直到堆为空。

时间复杂度 $O(n \times \log k)$,空间复杂度 $O(k)$。其中 $n$ 是所有链表节点数目的总和,而 $k$ 是题目给定的链表数目。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
        setattr(ListNode, "__lt__", lambda a, b: a.val < b.val)
        pq = [head for head in lists if head]
        heapify(pq)
        dummy = cur = ListNode()
        while pq:
            node = heappop(pq)
            if node.next:
                heappush(pq, node.next)
            cur.next = node
            cur = cur.next
        return dummy.next
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        PriorityQueue<ListNode> pq = new PriorityQueue<>((a, b) -> a.val - b.val);
        for (ListNode head : lists) {
            if (head != null) {
                pq.offer(head);
            }
        }
        ListNode dummy = new ListNode();
        ListNode cur = dummy;
        while (!pq.isEmpty()) {
            ListNode node = pq.poll();
            if (node.next != null) {
                pq.offer(node.next);
            }
            cur.next = node;
            cur = cur.next;
        }
        return dummy.next;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeKLists(vector<ListNode*>& lists) {
        auto cmp = [](ListNode* a, ListNode* b) { return a->val > b->val; };
        priority_queue<ListNode*, vector<ListNode*>, decltype(cmp)> pq;
        for (auto head : lists) {
            if (head) {
                pq.push(head);
            }
        }
        ListNode* dummy = new ListNode();
        ListNode* cur = dummy;
        while (!pq.empty()) {
            ListNode* node = pq.top();
            pq.pop();
            if (node->next) {
                pq.push(node->next);
            }
            cur->next = node;
            cur = cur->next;
        }
        return dummy->next;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func mergeKLists(lists []*ListNode) *ListNode {
    pq := hp{}
    for _, head := range lists {
        if head != nil {
            pq = append(pq, head)
        }
    }
    heap.Init(&pq)
    dummy := &ListNode{}
    cur := dummy
    for len(pq) > 0 {
        cur.Next = heap.Pop(&pq).(*ListNode)
        cur = cur.Next
        if cur.Next != nil {
            heap.Push(&pq, cur.Next)
        }
    }
    return dummy.Next
}

type hp []*ListNode

func (h hp) Len() int           { return len(h) }
func (h hp) Less(i, j int) bool { return h[i].Val < h[j].Val }
func (h hp) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any)        { *h = append(*h, v.(*ListNode)) }
func (h *hp) Pop() any          { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function mergeKLists(lists: Array<ListNode | null>): ListNode | null {
    const pq = new MinPriorityQueue({ priority: (node: ListNode) => node.val });
    lists.filter(head => head).forEach(head => pq.enqueue(head));
    const dummy: ListNode = new ListNode();
    let cur: ListNode = dummy;
    while (!pq.isEmpty()) {
        const node = pq.dequeue().element;
        cur.next = node;
        cur = cur.next;
        if (node.next) {
            pq.enqueue(node.next);
        }
    }
    return dummy.next;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
use std::cmp::Ordering;
use std::collections::BinaryHeap;

impl PartialOrd for ListNode {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}
impl Ord for ListNode {
    fn cmp(&self, other: &Self) -> Ordering {
        self.val.cmp(&other.val).reverse()
    }
}
impl Solution {
    pub fn merge_k_lists(lists: Vec<Option<Box<ListNode>>>) -> Option<Box<ListNode>> {
        let mut pq = lists
            .into_iter()
            .filter_map(|head| head)
            .collect::<BinaryHeap<_>>();
        let mut head = None;
        let mut cur = &mut head;
        while let Some(node) = pq.pop() {
            cur = &mut cur.insert(Box::new(ListNode::new(node.val))).next;
            if let Some(next) = node.next {
                pq.push(next);
            }
        }
        head
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode[]} lists
 * @return {ListNode}
 */
var mergeKLists = function (lists) {
    const pq = new MinPriorityQueue({ priority: node => node.val });
    lists.filter(head => head).forEach(head => pq.enqueue(head));
    const dummy = new ListNode();
    let cur = dummy;
    while (!pq.isEmpty()) {
        const node = pq.dequeue().element;
        cur.next = node;
        cur = cur.next;
        if (node.next) {
            pq.enqueue(node.next);
        }
    }
    return dummy.next;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int val=0, ListNode next=null) {
 *         this.val = val;
 *         this.next = next;
 *     }
 * }
 */
public class Solution {
    public ListNode MergeKLists(ListNode[] lists) {
        PriorityQueue<ListNode, int> pq = new PriorityQueue<ListNode, int>();
        foreach (var head in lists) {
            if (head != null) {
                pq.Enqueue(head, head.val);
            }
        }
        var dummy = new ListNode();
        var cur = dummy;
        while (pq.Count > 0) {
            var node = pq.Dequeue();
            cur.next = node;
            cur = cur.next;
            if (node.next != null) {
                pq.Enqueue(node.next, node.next.val);
            }
        }
        return dummy.next;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Definition for singly-linked list.
class ListNode {
    public $val;
    public $next;
    public function __construct($val = 0, $next = null) {
        $this->val = $val;
        $this->next = $next;
    }
}

class Solution {
    /**
     * @param ListNode[] $lists
     * @return ListNode
     */

    function mergeKLists($lists) {
        $numLists = count($lists);

        if ($numLists === 0) {
            return null;
        }
        while ($numLists > 1) {
            $mid = intval($numLists / 2);
            for ($i = 0; $i < $mid; $i++) {
                $lists[$i] = $this->mergeTwoLists($lists[$i], $lists[$numLists - $i - 1]);
            }
            $numLists = intval(($numLists + 1) / 2);
        }
        return $lists[0];
    }

    function mergeTwoLists($list1, $list2) {
        $dummy = new ListNode(0);
        $current = $dummy;

        while ($list1 != null && $list2 != null) {
            if ($list1->val <= $list2->val) {
                $current->next = $list1;
                $list1 = $list1->next;
            } else {
                $current->next = $list2;
                $list2 = $list2->next;
            }
            $current = $current->next;
        }
        if ($list1 != null) {
            $current->next = $list1;
        } elseif ($list2 != null) {
            $current->next = $list2;
        }
        return $dummy->next;
    }
}

评论