链表
分治
堆(优先队列)
归并排序
题目描述
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:
输入: lists = [[1,4,5],[1,3,4],[2,6]]
输出: [1,1,2,3,4,4,5,6]
解释: 链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:
输入: lists = []
输出: []
示例 3:
输入: lists = [[]]
输出: []
提示:
k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i]
按 升序 排列
lists[i].length
的总和不超过 10^4
解法
方法一:优先队列(小根堆)
我们可以创建一个小根堆来 $pq$ 维护所有链表的头节点,每次从小根堆中取出值最小的节点,添加到结果链表的末尾,然后将该节点的下一个节点加入堆中,重复上述步骤直到堆为空。
时间复杂度 $O(n \times \log k)$,空间复杂度 $O(k)$。其中 $n$ 是所有链表节点数目的总和,而 $k$ 是题目给定的链表数目。
Python3 Java C++ Go TypeScript Rust JavaScript C# PHP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution :
def mergeKLists ( self , lists : List [ Optional [ ListNode ]]) -> Optional [ ListNode ]:
setattr ( ListNode , "__lt__" , lambda a , b : a . val < b . val )
pq = [ head for head in lists if head ]
heapify ( pq )
dummy = cur = ListNode ()
while pq :
node = heappop ( pq )
if node . next :
heappush ( pq , node . next )
cur . next = node
cur = cur . next
return dummy . next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode mergeKLists ( ListNode [] lists ) {
PriorityQueue < ListNode > pq = new PriorityQueue <> (( a , b ) -> a . val - b . val );
for ( ListNode head : lists ) {
if ( head != null ) {
pq . offer ( head );
}
}
ListNode dummy = new ListNode ();
ListNode cur = dummy ;
while ( ! pq . isEmpty ()) {
ListNode node = pq . poll ();
if ( node . next != null ) {
pq . offer ( node . next );
}
cur . next = node ;
cur = cur . next ;
}
return dummy . next ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public :
ListNode * mergeKLists ( vector < ListNode *>& lists ) {
auto cmp = []( ListNode * a , ListNode * b ) { return a -> val > b -> val ; };
priority_queue < ListNode * , vector < ListNode *> , decltype ( cmp ) > pq ;
for ( auto head : lists ) {
if ( head ) {
pq . push ( head );
}
}
ListNode * dummy = new ListNode ();
ListNode * cur = dummy ;
while ( ! pq . empty ()) {
ListNode * node = pq . top ();
pq . pop ();
if ( node -> next ) {
pq . push ( node -> next );
}
cur -> next = node ;
cur = cur -> next ;
}
return dummy -> next ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func mergeKLists ( lists [] * ListNode ) * ListNode {
pq := hp {}
for _ , head := range lists {
if head != nil {
pq = append ( pq , head )
}
}
heap . Init ( & pq )
dummy := & ListNode {}
cur := dummy
for len ( pq ) > 0 {
cur . Next = heap . Pop ( & pq ).( * ListNode )
cur = cur . Next
if cur . Next != nil {
heap . Push ( & pq , cur . Next )
}
}
return dummy . Next
}
type hp [] * ListNode
func ( h hp ) Len () int { return len ( h ) }
func ( h hp ) Less ( i , j int ) bool { return h [ i ]. Val < h [ j ]. Val }
func ( h hp ) Swap ( i , j int ) { h [ i ], h [ j ] = h [ j ], h [ i ] }
func ( h * hp ) Push ( v any ) { * h = append ( * h , v .( * ListNode )) }
func ( h * hp ) Pop () any { a := * h ; v := a [ len ( a ) - 1 ]; * h = a [: len ( a ) - 1 ]; return v }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function mergeKLists ( lists : Array < ListNode | null > ) : ListNode | null {
const pq = new MinPriorityQueue ({ priority : ( node : ListNode ) => node . val });
lists . filter ( head => head ). forEach ( head => pq . enqueue ( head ));
const dummy : ListNode = new ListNode ();
let cur : ListNode = dummy ;
while ( ! pq . isEmpty ()) {
const node = pq . dequeue (). element ;
cur . next = node ;
cur = cur . next ;
if ( node . next ) {
pq . enqueue ( node . next );
}
}
return dummy . next ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 // Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
use std :: cmp :: Ordering ;
use std :: collections :: BinaryHeap ;
impl PartialOrd for ListNode {
fn partial_cmp ( & self , other : & Self ) -> Option < Ordering > {
Some ( self . cmp ( other ))
}
}
impl Ord for ListNode {
fn cmp ( & self , other : & Self ) -> Ordering {
self . val . cmp ( & other . val ). reverse ()
}
}
impl Solution {
pub fn merge_k_lists ( lists : Vec < Option < Box < ListNode >>> ) -> Option < Box < ListNode >> {
let mut pq = lists
. into_iter ()
. filter_map ( | head | head )
. collect :: < BinaryHeap < _ >> ();
let mut head = None ;
let mut cur = & mut head ;
while let Some ( node ) = pq . pop () {
cur = & mut cur . insert ( Box :: new ( ListNode :: new ( node . val ))). next ;
if let Some ( next ) = node . next {
pq . push ( next );
}
}
head
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* @param {ListNode[]} lists
* @return {ListNode}
*/
var mergeKLists = function ( lists ) {
const pq = new MinPriorityQueue ({ priority : node => node . val });
lists . filter ( head => head ). forEach ( head => pq . enqueue ( head ));
const dummy = new ListNode ();
let cur = dummy ;
while ( ! pq . isEmpty ()) {
const node = pq . dequeue (). element ;
cur . next = node ;
cur = cur . next ;
if ( node . next ) {
pq . enqueue ( node . next );
}
}
return dummy . next ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for singly-linked list.
* public class ListNode {
* public int val;
* public ListNode next;
* public ListNode(int val=0, ListNode next=null) {
* this.val = val;
* this.next = next;
* }
* }
*/
public class Solution {
public ListNode MergeKLists ( ListNode [] lists ) {
PriorityQueue < ListNode , int > pq = new PriorityQueue < ListNode , int > ();
foreach ( var head in lists ) {
if ( head != null ) {
pq . Enqueue ( head , head . val );
}
}
var dummy = new ListNode ();
var cur = dummy ;
while ( pq . Count > 0 ) {
var node = pq . Dequeue ();
cur . next = node ;
cur = cur . next ;
if ( node . next != null ) {
pq . Enqueue ( node . next , node . next . val );
}
}
return dummy . next ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 # Definition for singly-linked list.
class ListNode {
public $val;
public $next;
public function __construct($val = 0, $next = null) {
$this->val = $val;
$this->next = $next;
}
}
class Solution {
/**
* @param ListNode[] $lists
* @return ListNode
*/
function mergeKLists($lists) {
$numLists = count($lists);
if ($numLists === 0) {
return null;
}
while ($numLists > 1) {
$mid = intval($numLists / 2);
for ($i = 0; $i < $mid; $i++) {
$lists[$i] = $this->mergeTwoLists($lists[$i], $lists[$numLists - $i - 1]);
}
$numLists = intval(($numLists + 1) / 2);
}
return $lists[0];
}
function mergeTwoLists($list1, $list2) {
$dummy = new ListNode(0);
$current = $dummy;
while ($list1 != null && $list2 != null) {
if ($list1->val <= $list2->val) {
$current->next = $list1;
$list1 = $list1->next;
} else {
$current->next = $list2;
$list2 = $list2->next;
}
$current = $current->next;
}
if ($list1 != null) {
$current->next = $list1;
} elseif ($list2 != null) {
$current->next = $list2;
}
return $dummy->next;
}
}