题目描述
给你一个下标从 0 开始的二维整数数组 grid
,数组大小为 m x n
。每个单元格都是两个值之一:
0
表示一个 空 单元格,
1
表示一个可以移除的 障碍物 。
你可以向上、下、左、右移动,从一个空单元格移动到另一个空单元格。
现在你需要从左上角 (0, 0)
移动到右下角 (m - 1, n - 1)
,返回需要移除的障碍物的 最小 数目。
示例 1:
输入:grid = [[0,1,1],[1,1,0],[1,1,0]]
输出:2
解释:可以移除位于 (0, 1) 和 (0, 2) 的障碍物来创建从 (0, 0) 到 (2, 2) 的路径。
可以证明我们至少需要移除两个障碍物,所以返回 2 。
注意,可能存在其他方式来移除 2 个障碍物,创建出可行的路径。
示例 2:
输入:grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]]
输出:0
解释:不移除任何障碍物就能从 (0, 0) 到 (2, 4) ,所以返回 0 。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
2 <= m * n <= 105
grid[i][j]
为 0
或 1
grid[0][0] == grid[m - 1][n - 1] == 0
解法
方法一:双端队列 BFS
本题实际上也是最短路模型,只不过求解的是移除障碍物的最小数目。
在一个边权只有 $0$, $1$ 的无向图中搜索最短路径可以使用双端队列进行 $BFS$。其原理是当前可以扩展到的点的权重为 $0$ 时,将其加入队首;权重为 $1$ 时,将其加入队尾。
如果某条边权值为 $0$,那么新拓展出的节点权值就和当前队首节点权值相同,显然可以作为下一次拓展的起点。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
相似题目:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution:
def minimumObstacles(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
q = deque([(0, 0, 0)])
vis = set()
dirs = (-1, 0, 1, 0, -1)
while 1:
i, j, k = q.popleft()
if i == m - 1 and j == n - 1:
return k
if (i, j) in vis:
continue
vis.add((i, j))
for a, b in pairwise(dirs):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n:
if grid[x][y] == 0:
q.appendleft((x, y, k))
else:
q.append((x, y, k + 1))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public int minimumObstacles(int[][] grid) {
int m = grid.length, n = grid[0].length;
Deque<int[]> q = new ArrayDeque<>();
q.offer(new int[] {0, 0, 0});
int[] dirs = {-1, 0, 1, 0, -1};
boolean[][] vis = new boolean[m][n];
while (true) {
var p = q.poll();
int i = p[0], j = p[1], k = p[2];
if (i == m - 1 && j == n - 1) {
return k;
}
if (vis[i][j]) {
continue;
}
vis[i][j] = true;
for (int h = 0; h < 4; ++h) {
int x = i + dirs[h], y = j + dirs[h + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (grid[x][y] == 0) {
q.offerFirst(new int[] {x, y, k});
} else {
q.offerLast(new int[] {x, y, k + 1});
}
}
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
public:
int minimumObstacles(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
deque<tuple<int, int, int>> q{{0, 0, 0}};
bool vis[m][n];
memset(vis, 0, sizeof vis);
int dirs[5] = {-1, 0, 1, 0, -1};
while (1) {
auto [i, j, k] = q.front();
q.pop_front();
if (i == m - 1 && j == n - 1) {
return k;
}
if (vis[i][j]) {
continue;
}
vis[i][j] = true;
for (int h = 0; h < 4; ++h) {
int x = i + dirs[h], y = j + dirs[h + 1];
if (x >= 0 && x < m && y >= 0 && y < n) {
if (grid[x][y] == 0) {
q.push_front({x, y, k});
} else {
q.push_back({x, y, k + 1});
}
}
}
}
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | func minimumObstacles(grid [][]int) int {
m, n := len(grid), len(grid[0])
q := doublylinkedlist.New()
type tuple struct{ i, j, k int }
q.Add(tuple{0, 0, 0})
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
dirs := [5]int{-1, 0, 1, 0, -1}
for {
v, _ := q.Get(0)
p := v.(tuple)
q.Remove(0)
i, j, k := p.i, p.j, p.k
if i == m-1 && j == n-1 {
return k
}
if vis[i][j] {
continue
}
vis[i][j] = true
for h := 0; h < 4; h++ {
x, y := i+dirs[h], j+dirs[h+1]
if x >= 0 && x < m && y >= 0 && y < n {
if grid[x][y] == 0 {
q.Insert(0, tuple{x, y, k})
} else {
q.Add(tuple{x, y, k + 1})
}
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | function minimumObstacles(grid: number[][]): number {
const m = grid.length,
n = grid[0].length;
const dirs = [
[0, 1],
[0, -1],
[1, 0],
[-1, 0],
];
let ans = Array.from({ length: m }, v => new Array(n).fill(Infinity));
ans[0][0] = 0;
let deque = [[0, 0]];
while (deque.length) {
let [x, y] = deque.shift();
for (let [dx, dy] of dirs) {
let [i, j] = [x + dx, y + dy];
if (i < 0 || i > m - 1 || j < 0 || j > n - 1) continue;
const cost = grid[i][j];
if (ans[x][y] + cost >= ans[i][j]) continue;
ans[i][j] = ans[x][y] + cost;
deque.push([i, j]);
}
}
return ans[m - 1][n - 1];
}
|