树
深度优先搜索
广度优先搜索
二叉树
题目描述
给你一棵二叉树的根节点 root
,翻转这棵二叉树,并返回其根节点。
示例 1:
输入: root = [4,2,7,1,3,6,9]
输出: [4,7,2,9,6,3,1]
示例 2:
输入: root = [2,1,3]
输出: [2,3,1]
示例 3:
输入: root = []
输出: []
提示:
树中节点数目范围在 [0, 100]
内
-100 <= Node.val <= 100
解法
方法一:递归
我们首先判断 $\textit{root}$ 是否为空,若为空则直接返回 $\text{null}$。然后递归地对树的左右子树进行翻转,将翻转后的右子树作为新的左子树,将翻转后的左子树作为新的右子树,返回 $\textit{root}$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def invertTree ( self , root : Optional [ TreeNode ]) -> Optional [ TreeNode ]:
if root is None :
return None
l , r = self . invertTree ( root . left ), self . invertTree ( root . right )
root . left , root . right = r , l
return root
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree ( TreeNode root ) {
if ( root == null ) {
return null ;
}
TreeNode l = invertTree ( root . left );
TreeNode r = invertTree ( root . right );
root . left = r ;
root . right = l ;
return root ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * invertTree ( TreeNode * root ) {
if ( ! root ) {
return root ;
}
TreeNode * l = invertTree ( root -> left );
TreeNode * r = invertTree ( root -> right );
root -> left = r ;
root -> right = l ;
return root ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree ( root * TreeNode ) * TreeNode {
if root == nil {
return root
}
l , r := invertTree ( root . Left ), invertTree ( root . Right )
root . Left , root . Right = r , l
return root
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function invertTree ( root : TreeNode | null ) : TreeNode | null {
if ( ! root ) {
return root ;
}
const l = invertTree ( root . left );
const r = invertTree ( root . right );
root . left = r ;
root . right = l ;
return root ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: rc :: Rc ;
use std :: cell :: RefCell ;
impl Solution {
pub fn invert_tree ( root : Option < Rc < RefCell < TreeNode >>> ) -> Option < Rc < RefCell < TreeNode >>> {
if let Some ( node ) = root . clone () {
let mut node = node . borrow_mut ();
let left = node . left . take ();
let right = node . right . take ();
node . left = Self :: invert_tree ( right );
node . right = Self :: invert_tree ( left );
}
root
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var invertTree = function ( root ) {
if ( ! root ) {
return root ;
}
const l = invertTree ( root . left );
const r = invertTree ( root . right );
root . left = r ;
root . right = l ;
return root ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public TreeNode InvertTree ( TreeNode root ) {
if ( root == null ) {
return null ;
}
TreeNode l = InvertTree ( root . left );
TreeNode r = InvertTree ( root . right );
root . left = r ;
root . right = l ;
return root ;
}
}