题目描述
给你两个整数 m
和 n
表示一个下标从 0 开始的 m x n
网格图。同时给你两个二维整数数组 guards
和 walls
,其中 guards[i] = [rowi, coli]
且 walls[j] = [rowj, colj]
,分别表示第 i
个警卫和第 j
座墙所在的位置。
一个警卫能看到 4 个坐标轴方向(即东、南、西、北)的 所有 格子,除非他们被一座墙或者另外一个警卫 挡住 了视线。如果一个格子能被 至少 一个警卫看到,那么我们说这个格子被 保卫 了。
请你返回空格子中,有多少个格子是 没被保卫 的。
示例 1:
输入:m = 4, n = 6, guards = [[0,0],[1,1],[2,3]], walls = [[0,1],[2,2],[1,4]]
输出:7
解释:上图中,被保卫和没有被保卫的格子分别用红色和绿色表示。
总共有 7 个没有被保卫的格子,所以我们返回 7 。
示例 2:
输入:m = 3, n = 3, guards = [[1,1]], walls = [[0,1],[1,0],[2,1],[1,2]]
输出:4
解释:上图中,没有被保卫的格子用绿色表示。
总共有 4 个没有被保卫的格子,所以我们返回 4 。
提示:
1 <= m, n <= 105
2 <= m * n <= 105
1 <= guards.length, walls.length <= 5 * 104
2 <= guards.length + walls.length <= m * n
guards[i].length == walls[j].length == 2
0 <= rowi, rowj < m
0 <= coli, colj < n
guards
和 walls
中所有位置 互不相同 。
解法
方法一:模拟
我们创建一个 $m \times n$ 的二维数组 $g$,其中 $g[i][j]$ 表示第 $i$ 行第 $j$ 列的格子。初始时 $g[i][j]$ 的值为 $0$,表示该格子没有被保卫。
然后遍历所有的警卫和墙,将 $g[i][j]$ 的值置为 $2$,这些位置不能被访问。
接下来,我们遍历所有警卫的位置,从该位置出发,向四个方向进行模拟,直到遇到墙或警卫,或者越界。在模拟的过程中,将遇到的格子的值置为 $1$,表示该格子被保卫。
最后,我们遍历 $g$,统计值为 $0$ 的格子的个数,即为答案。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution:
def countUnguarded(
self, m: int, n: int, guards: List[List[int]], walls: List[List[int]]
) -> int:
g = [[0] * n for _ in range(m)]
for i, j in guards:
g[i][j] = 2
for i, j in walls:
g[i][j] = 2
dirs = (-1, 0, 1, 0, -1)
for i, j in guards:
for a, b in pairwise(dirs):
x, y = i, j
while 0 <= x + a < m and 0 <= y + b < n and g[x + a][y + b] < 2:
x, y = x + a, y + b
g[x][y] = 1
return sum(v == 0 for row in g for v in row)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public int countUnguarded(int m, int n, int[][] guards, int[][] walls) {
int[][] g = new int[m][n];
for (var e : guards) {
g[e[0]][e[1]] = 2;
}
for (var e : walls) {
g[e[0]][e[1]] = 2;
}
int[] dirs = {-1, 0, 1, 0, -1};
for (var e : guards) {
for (int k = 0; k < 4; ++k) {
int x = e[0], y = e[1];
int a = dirs[k], b = dirs[k + 1];
while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && g[x + a][y + b] < 2) {
x += a;
y += b;
g[x][y] = 1;
}
}
}
int ans = 0;
for (var row : g) {
for (int v : row) {
if (v == 0) {
++ans;
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int countUnguarded(int m, int n, vector<vector<int>>& guards, vector<vector<int>>& walls) {
int g[m][n];
memset(g, 0, sizeof(g));
for (auto& e : guards) {
g[e[0]][e[1]] = 2;
}
for (auto& e : walls) {
g[e[0]][e[1]] = 2;
}
int dirs[5] = {-1, 0, 1, 0, -1};
for (auto& e : guards) {
for (int k = 0; k < 4; ++k) {
int x = e[0], y = e[1];
int a = dirs[k], b = dirs[k + 1];
while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && g[x + a][y + b] < 2) {
x += a;
y += b;
g[x][y] = 1;
}
}
}
int ans = 0;
for (auto& row : g) {
ans += count(row, row + n, 0);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func countUnguarded(m int, n int, guards [][]int, walls [][]int) (ans int) {
g := make([][]int, m)
for i := range g {
g[i] = make([]int, n)
}
for _, e := range guards {
g[e[0]][e[1]] = 2
}
for _, e := range walls {
g[e[0]][e[1]] = 2
}
dirs := [5]int{-1, 0, 1, 0, -1}
for _, e := range guards {
for k := 0; k < 4; k++ {
x, y := e[0], e[1]
a, b := dirs[k], dirs[k+1]
for x+a >= 0 && x+a < m && y+b >= 0 && y+b < n && g[x+a][y+b] < 2 {
x, y = x+a, y+b
g[x][y] = 1
}
}
}
for _, row := range g {
for _, v := range row {
if v == 0 {
ans++
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function countUnguarded(m: number, n: number, guards: number[][], walls: number[][]): number {
const g: number[][] = Array.from({ length: m }, () => Array.from({ length: n }, () => 0));
for (const [i, j] of guards) {
g[i][j] = 2;
}
for (const [i, j] of walls) {
g[i][j] = 2;
}
const dirs: number[] = [-1, 0, 1, 0, -1];
for (const [i, j] of guards) {
for (let k = 0; k < 4; ++k) {
let [x, y] = [i, j];
let [a, b] = [dirs[k], dirs[k + 1]];
while (x + a >= 0 && x + a < m && y + b >= 0 && y + b < n && g[x + a][y + b] < 2) {
x += a;
y += b;
g[x][y] = 1;
}
}
}
let ans = 0;
for (const row of g) {
for (const v of row) {
ans += v === 0 ? 1 : 0;
}
}
return ans;
}
|