位运算
树
二分查找
二叉树
题目描述
给你一棵 完全二叉树 的根节点 root
,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h
层,则该层包含 1~ 2h
个节点。
示例 1:
输入: root = [1,2,3,4,5,6]
输出: 6
示例 2:
输入: root = []
输出: 0
示例 3:
输入: root = [1]
输出: 1
提示:
树中节点的数目范围是[0, 5 * 104 ]
0 <= Node.val <= 5 * 104
题目数据保证输入的树是 完全二叉树
进阶: 遍历树来统计节点是一种时间复杂度为 O(n)
的简单解决方案。你可以设计一个更快的算法吗?
解法
方法一:递归
递归遍历整棵树,统计结点个数。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为树的结点个数。
Python3 Java C++ Go Rust JavaScript C#
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def countNodes ( self , root : Optional [ TreeNode ]) -> int :
if root is None :
return 0
return 1 + self . countNodes ( root . left ) + self . countNodes ( root . right )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
return 1 + countNodes ( root . left ) + countNodes ( root . right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int countNodes ( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
return 1 + countNodes ( root -> left ) + countNodes ( root -> right );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func countNodes ( root * TreeNode ) int {
if root == nil {
return 0
}
return 1 + countNodes ( root . Left ) + countNodes ( root . Right )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn count_nodes ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
if let Some ( node ) = root {
let node = node . borrow ();
let left = Self :: depth ( & node . left );
let right = Self :: depth ( & node . right );
if left == right {
Self :: count_nodes ( node . right . clone ()) + ( 1 << left )
} else {
Self :: count_nodes ( node . left . clone ()) + ( 1 << right )
}
} else {
0
}
}
fn depth ( root : & Option < Rc < RefCell < TreeNode >>> ) -> i32 {
if let Some ( node ) = root {
Self :: depth ( & node . borrow (). left ) + 1
} else {
0
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var countNodes = function ( root ) {
if ( ! root ) {
return 0 ;
}
return 1 + countNodes ( root . left ) + countNodes ( root . right );
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int CountNodes ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
return 1 + CountNodes ( root . left ) + CountNodes ( root . right );
}
}
方法二:二分查找
对于此题,我们还可以利用完全二叉树的特点,设计一个更快的算法。
完全二叉树的特点:叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。需要注意的是,满二叉树肯定是完全二叉树,而完全二叉树不一定是满二叉树。
若满二叉树的层数为 $h$,则总结点数为 $2^h - 1$。
我们可以先对 $root$ 的左右子树进行高度统计,分别记为 $left$ 和 $right$。
若 $left = right$,说明左子树是一颗满二叉树,那么左子树的结点总数为 $2^{left} - 1$,加上 $root$ 结点,就是 $2^{left}$,然后递归统计右子树即可。
若 $left \gt right$,说明右子树是一个满二叉树,那么右子树的结点总数为 $2^{right} - 1$,加上 $root$ 结点,就是 $2^{right}$,然后递归统计左子树即可。
时间复杂度 $O(\log^2 n)$。
Python3 Java C++ Go JavaScript C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def countNodes ( self , root : Optional [ TreeNode ]) -> int :
def depth ( root ):
d = 0
while root :
d += 1
root = root . left
return d
if root is None :
return 0
left , right = depth ( root . left ), depth ( root . right )
if left == right :
return ( 1 << left ) + self . countNodes ( root . right )
return ( 1 << right ) + self . countNodes ( root . left )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int left = depth ( root . left );
int right = depth ( root . right );
if ( left == right ) {
return ( 1 << left ) + countNodes ( root . right );
}
return ( 1 << right ) + countNodes ( root . left );
}
private int depth ( TreeNode root ) {
int d = 0 ;
for (; root != null ; root = root . left ) {
++ d ;
}
return d ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int countNodes ( TreeNode * root ) {
if ( ! root ) {
return 0 ;
}
int left = depth ( root -> left );
int right = depth ( root -> right );
if ( left == right ) {
return ( 1 << left ) + countNodes ( root -> right );
}
return ( 1 << right ) + countNodes ( root -> left );
}
int depth ( TreeNode * root ) {
int d = 0 ;
for (; root ; root = root -> left ) {
++ d ;
}
return d ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func countNodes ( root * TreeNode ) int {
if root == nil {
return 0
}
left , right := depth ( root . Left ), depth ( root . Right )
if left == right {
return ( 1 << left ) + countNodes ( root . Right )
}
return ( 1 << right ) + countNodes ( root . Left )
}
func depth ( root * TreeNode ) ( d int ) {
for ; root != nil ; root = root . Left {
d ++
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var countNodes = function ( root ) {
const depth = root => {
let d = 0 ;
for (; root ; root = root . left ) {
++ d ;
}
return d ;
};
if ( ! root ) {
return 0 ;
}
const left = depth ( root . left );
const right = depth ( root . right );
if ( left == right ) {
return ( 1 << left ) + countNodes ( root . right );
}
return ( 1 << right ) + countNodes ( root . left );
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int CountNodes ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int left = depth ( root . left );
int right = depth ( root . right );
if ( left == right ) {
return ( 1 << left ) + CountNodes ( root . right );
}
return ( 1 << right ) + CountNodes ( root . left );
}
private int depth ( TreeNode root ) {
int d = 0 ;
for (; root != null ; root = root . left ) {
++ d ;
}
return d ;
}
}
GitHub