题目描述
在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:
输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:
输入:matrix = [["0"]]
输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
为 '0'
或 '1'
解法
方法一:动态规划
我们定义 $dp[i + 1][j + 1]$ 表示以下标 $(i, j)$ 作为正方形右下角的最大正方形边长。答案为所有 $dp[i + 1][j + 1]$ 中的最大值。
状态转移方程为:
$$
dp[i + 1][j + 1] =
\begin{cases}
0 & \textit{if } matrix[i][j] = '0' \
\min(dp[i][j], dp[i][j + 1], dp[i + 1][j]) + 1 & \textit{if } matrix[i][j] = '1'
\end{cases}
$$
时间复杂度 $O(m\times n)$,空间复杂度 $O(m\times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。
| class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
m, n = len(matrix), len(matrix[0])
dp = [[0] * (n + 1) for _ in range(m + 1)]
mx = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == '1':
dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j], dp[i][j]) + 1
mx = max(mx, dp[i + 1][j + 1])
return mx * mx
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m + 1][n + 1];
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = Math.max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | func maximalSquare(matrix [][]byte) int {
m, n := len(matrix), len(matrix[0])
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
}
mx := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if matrix[i][j] == '1' {
dp[i+1][j+1] = min(min(dp[i][j+1], dp[i+1][j]), dp[i][j]) + 1
mx = max(mx, dp[i+1][j+1])
}
}
}
return mx * mx
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | public class Solution {
public int MaximalSquare(char[][] matrix) {
int m = matrix.Length, n = matrix[0].Length;
var dp = new int[m + 1, n + 1];
int mx = 0;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (matrix[i][j] == '1')
{
dp[i + 1, j + 1] = Math.Min(Math.Min(dp[i, j + 1], dp[i + 1, j]), dp[i, j]) + 1;
mx = Math.Max(mx, dp[i + 1, j + 1]);
}
}
}
return mx * mx;
}
}
|