跳转至

2196. 根据描述创建二叉树

题目描述

给你一个二维整数数组 descriptions ,其中 descriptions[i] = [parenti, childi, isLefti] 表示 parentichildi二叉树 中的 父节点,二叉树中各节点的值 互不相同 。此外:

  • 如果 isLefti == 1 ,那么 childi 就是 parenti 的左子节点。
  • 如果 isLefti == 0 ,那么 childi 就是 parenti 的右子节点。

请你根据 descriptions 的描述来构造二叉树并返回其 根节点

测试用例会保证可以构造出 有效 的二叉树。

 

示例 1:

输入:descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]]
输出:[50,20,80,15,17,19]
解释:根节点是值为 50 的节点,因为它没有父节点。
结果二叉树如上图所示。

示例 2:

输入:descriptions = [[1,2,1],[2,3,0],[3,4,1]]
输出:[1,2,null,null,3,4]
解释:根节点是值为 1 的节点,因为它没有父节点。 
结果二叉树如上图所示。 

 

提示:

  • 1 <= descriptions.length <= 104
  • descriptions[i].length == 3
  • 1 <= parenti, childi <= 105
  • 0 <= isLefti <= 1
  • descriptions 所描述的二叉树是一棵有效二叉树

解法

方法一:哈希表

我们可以用一个哈希表 $\textit{nodes}$ 来存储所有节点,其中键为节点的值,值为节点本身,用一个集合 $\textit{children}$ 来存储所有的子节点。

遍历 $\textit{descriptions}$,对于每个描述 $[\textit{parent}, \textit{child}, \textit{isLeft}]$,如果 $\textit{parent}$ 不在 $\textit{nodes}$ 中,我们就将 $\textit{parent}$ 加入 $\textit{nodes}$,并初始化一个值为 $\textit{parent}$ 的节点。如果 $\textit{child}$ 不在 $\textit{nodes}$ 中,我们就将 $\textit{child}$ 加入 $\textit{nodes}$,并初始化一个值为 $\textit{child}$ 的节点。然后我们将 $\textit{child}$ 加入 $\textit{children}$。

如果 $\textit{isLeft}$ 为真,我们就将 $\textit{child}$ 作为 $\textit{parent}$ 的左子节点,否则我们就将 $\textit{child}$ 作为 $\textit{parent}$ 的右子节点。

最后,我们遍历 $\textit{nodes}$,如果某个节点的值不在 $\textit{children}$ 中,那么这个节点就是根节点,我们返回这个节点。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是 $\textit{descriptions}$ 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def createBinaryTree(self, descriptions: List[List[int]]) -> Optional[TreeNode]:
        nodes = defaultdict(TreeNode)
        children = set()
        for parent, child, isLeft in descriptions:
            if parent not in nodes:
                nodes[parent] = TreeNode(parent)
            if child not in nodes:
                nodes[child] = TreeNode(child)
            children.add(child)
            if isLeft:
                nodes[parent].left = nodes[child]
            else:
                nodes[parent].right = nodes[child]
        root = (set(nodes.keys()) - children).pop()
        return nodes[root]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode createBinaryTree(int[][] descriptions) {
        Map<Integer, TreeNode> nodes = new HashMap<>();
        Set<Integer> children = new HashSet<>();
        for (var d : descriptions) {
            int parent = d[0], child = d[1], isLeft = d[2];
            if (!nodes.containsKey(parent)) {
                nodes.put(parent, new TreeNode(parent));
            }
            if (!nodes.containsKey(child)) {
                nodes.put(child, new TreeNode(child));
            }
            if (isLeft == 1) {
                nodes.get(parent).left = nodes.get(child);
            } else {
                nodes.get(parent).right = nodes.get(child);
            }
            children.add(child);
        }
        for (var e : nodes.entrySet()) {
            if (!children.contains(e.getKey())) {
                return e.getValue();
            }
        }
        return null;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* createBinaryTree(vector<vector<int>>& descriptions) {
        unordered_map<int, TreeNode*> nodes;
        unordered_set<int> children;
        for (const auto& d : descriptions) {
            int parent = d[0], child = d[1], isLeft = d[2];
            if (!nodes.contains(parent)) {
                nodes[parent] = new TreeNode(parent);
            }
            if (!nodes.contains(child)) {
                nodes[child] = new TreeNode(child);
            }
            if (isLeft) {
                nodes[parent]->left = nodes[child];
            } else {
                nodes[parent]->right = nodes[child];
            }
            children.insert(child);
        }
        for (const auto& [k, v] : nodes) {
            if (!children.contains(k)) {
                return v;
            }
        }
        return nullptr;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func createBinaryTree(descriptions [][]int) *TreeNode {
    nodes := map[int]*TreeNode{}
    children := map[int]bool{}
    for _, d := range descriptions {
        parent, child, isLeft := d[0], d[1], d[2]
        if _, ok := nodes[parent]; !ok {
            nodes[parent] = &TreeNode{Val: parent}
        }
        if _, ok := nodes[child]; !ok {
            nodes[child] = &TreeNode{Val: child}
        }
        if isLeft == 1 {
            nodes[parent].Left = nodes[child]
        } else {
            nodes[parent].Right = nodes[child]
        }
        children[child] = true
    }
    for k, v := range nodes {
        if _, ok := children[k]; !ok {
            return v
        }
    }
    return nil
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function createBinaryTree(descriptions: number[][]): TreeNode | null {
    const nodes: Record<number, TreeNode> = {};
    const children = new Set<number>();
    for (const [parent, child, isLeft] of descriptions) {
        if (!nodes[parent]) {
            nodes[parent] = new TreeNode(parent);
        }
        if (!nodes[child]) {
            nodes[child] = new TreeNode(child);
        }
        if (isLeft) {
            nodes[parent].left = nodes[child];
        } else {
            nodes[parent].right = nodes[child];
        }
        children.add(child);
    }
    for (const [k, v] of Object.entries(nodes)) {
        if (!children.has(+k)) {
            return v;
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::rc::Rc;
impl Solution {
    pub fn create_binary_tree(descriptions: Vec<Vec<i32>>) -> Option<Rc<RefCell<TreeNode>>> {
        let mut nodes = HashMap::new();
        let mut children = HashSet::new();

        for d in descriptions {
            let parent = d[0];
            let child = d[1];
            let is_left = d[2];

            nodes
                .entry(parent)
                .or_insert_with(|| Rc::new(RefCell::new(TreeNode::new(parent))));
            nodes
                .entry(child)
                .or_insert_with(|| Rc::new(RefCell::new(TreeNode::new(child))));

            if is_left == 1 {
                nodes.get(&parent).unwrap().borrow_mut().left =
                    Some(Rc::clone(nodes.get(&child).unwrap()));
            } else {
                nodes.get(&parent).unwrap().borrow_mut().right =
                    Some(Rc::clone(nodes.get(&child).unwrap()));
            }

            children.insert(child);
        }

        for (key, node) in &nodes {
            if !children.contains(key) {
                return Some(Rc::clone(node));
            }
        }

        None
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {number[][]} descriptions
 * @return {TreeNode}
 */
var createBinaryTree = function (descriptions) {
    const nodes = {};
    const children = new Set();
    for (const [parent, child, isLeft] of descriptions) {
        if (!nodes[parent]) {
            nodes[parent] = new TreeNode(parent);
        }
        if (!nodes[child]) {
            nodes[child] = new TreeNode(child);
        }
        if (isLeft) {
            nodes[parent].left = nodes[child];
        } else {
            nodes[parent].right = nodes[child];
        }
        children.add(child);
    }
    for (const [k, v] of Object.entries(nodes)) {
        if (!children.has(+k)) {
            return v;
        }
    }
};

评论