跳转至

21. 合并两个有序链表

题目描述

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 

 

示例 1:

输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]

示例 2:

输入:l1 = [], l2 = []
输出:[]

示例 3:

输入:l1 = [], l2 = [0]
输出:[0]

 

提示:

  • 两个链表的节点数目范围是 [0, 50]
  • -100 <= Node.val <= 100
  • l1l2 均按 非递减顺序 排列

解法

方法一:递归

我们先判断链表 $l_1$ 和 $l_2$ 是否为空,若其中一个为空,则返回另一个链表。否则,我们比较 $l_1$ 和 $l_2$ 的头节点:

  • 若 $l_1$ 的头节点的值小于等于 $l_2$ 的头节点的值,则递归调用函数 $mergeTwoLists(l_1.next, l_2)$,并将 $l_1$ 的头节点与返回的链表头节点相连,返回 $l_1$ 的头节点。
  • 否则,递归调用函数 $mergeTwoLists(l_1, l_2.next)$,并将 $l_2$ 的头节点与返回的链表头节点相连,返回 $l_2$ 的头节点。

时间复杂度 $O(m + n)$,空间复杂度 $O(m + n)$。其中 $m$ 和 $n$ 分别为两个链表的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def mergeTwoLists(
        self, list1: Optional[ListNode], list2: Optional[ListNode]
    ) -> Optional[ListNode]:
        if list1 is None or list2 is None:
            return list1 or list2
        if list1.val <= list2.val:
            list1.next = self.mergeTwoLists(list1.next, list2)
            return list1
        else:
            list2.next = self.mergeTwoLists(list1, list2.next)
            return list2
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        if (list1 == null) {
            return list2;
        }
        if (list2 == null) {
            return list1;
        }
        if (list1.val <= list2.val) {
            list1.next = mergeTwoLists(list1.next, list2);
            return list1;
        } else {
            list2.next = mergeTwoLists(list1, list2.next);
            return list2;
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
        if (!list1) return list2;
        if (!list2) return list1;
        if (list1->val <= list2->val) {
            list1->next = mergeTwoLists(list1->next, list2);
            return list1;
        } else {
            list2->next = mergeTwoLists(list1, list2->next);
            return list2;
        }
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func mergeTwoLists(list1 *ListNode, list2 *ListNode) *ListNode {
    if list1 == nil {
        return list2
    }
    if list2 == nil {
        return list1
    }
    if list1.Val <= list2.Val {
        list1.Next = mergeTwoLists(list1.Next, list2)
        return list1
    } else {
        list2.Next = mergeTwoLists(list1, list2.Next)
        return list2
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function mergeTwoLists(list1: ListNode | null, list2: ListNode | null): ListNode | null {
    if (list1 == null || list2 == null) {
        return list1 || list2;
    }
    if (list1.val < list2.val) {
        list1.next = mergeTwoLists(list1.next, list2);
        return list1;
    } else {
        list2.next = mergeTwoLists(list1, list2.next);
        return list2;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
impl Solution {
    pub fn merge_two_lists(
        list1: Option<Box<ListNode>>,
        list2: Option<Box<ListNode>>,
    ) -> Option<Box<ListNode>> {
        match (list1, list2) {
            (None, None) => None,
            (Some(list), None) => Some(list),
            (None, Some(list)) => Some(list),
            (Some(mut list1), Some(mut list2)) => {
                if list1.val < list2.val {
                    list1.next = Self::merge_two_lists(list1.next, Some(list2));
                    Some(list1)
                } else {
                    list2.next = Self::merge_two_lists(Some(list1), list2.next);
                    Some(list2)
                }
            }
        }
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode} list1
 * @param {ListNode} list2
 * @return {ListNode}
 */
var mergeTwoLists = function (list1, list2) {
    if (!list1 || !list2) {
        return list1 || list2;
    }
    if (list1.val <= list2.val) {
        list1.next = mergeTwoLists(list1.next, list2);
        return list1;
    } else {
        list2.next = mergeTwoLists(list1, list2.next);
        return list2;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     public int val;
 *     public ListNode next;
 *     public ListNode(int val=0, ListNode next=null) {
 *         this.val = val;
 *         this.next = next;
 *     }
 * }
 */
public class Solution {
    public ListNode MergeTwoLists(ListNode list1, ListNode list2) {
        ListNode dummy = new ListNode();
        ListNode cur = dummy;
        while (list1 != null && list2 != null)
        {
            if (list1.val <= list2.val)
            {
                cur.next = list1;
                list1 = list1.next;
            }
            else
            {
                cur.next = list2;
                list2 = list2.next;
            }
            cur = cur.next;
        }
        cur.next = list1 == null ? list2 : list1;
        return dummy.next;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Definition for singly-linked list.
# class ListNode
#     attr_accessor :val, :next
#     def initialize(val = 0, _next = nil)
#         @val = val
#         @next = _next
#     end
# end
# @param {ListNode} list1
# @param {ListNode} list2
# @return {ListNode}
def merge_two_lists(list1, list2)
    dummy = ListNode.new()
    cur = dummy
    while list1 && list2
        if list1.val <= list2.val
            cur.next = list1
            list1 = list1.next
        else
            cur.next = list2
            list2 = list2.next
        end
        cur = cur.next
    end
    cur.next = list1 || list2
    dummy.next
end

方法二:迭代

我们也可以用迭代的方式来实现两个排序链表的合并。

我们先定义一个虚拟头节点 $dummy$,然后循环遍历两个链表,比较两个链表的头节点,将较小的节点添加到 $dummy$ 的末尾,直到其中一个链表为空,然后将另一个链表的剩余部分添加到 $dummy$ 的末尾。

最后返回 $dummy.next$ 即可。

时间复杂度 $O(m + n)$,其中 $m$ 和 $n$ 分别为两个链表的长度。忽略答案链表的空间消耗,空间复杂度 $O(1)$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def mergeTwoLists(
        self, list1: Optional[ListNode], list2: Optional[ListNode]
    ) -> Optional[ListNode]:
        dummy = ListNode()
        curr = dummy
        while list1 and list2:
            if list1.val <= list2.val:
                curr.next = list1
                list1 = list1.next
            else:
                curr.next = list2
                list2 = list2.next
            curr = curr.next
        curr.next = list1 or list2
        return dummy.next
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
        ListNode dummy = new ListNode();
        ListNode curr = dummy;
        while (list1 != null && list2 != null) {
            if (list1.val <= list2.val) {
                curr.next = list1;
                list1 = list1.next;
            } else {
                curr.next = list2;
                list2 = list2.next;
            }
            curr = curr.next;
        }
        curr.next = list1 == null ? list2 : list1;
        return dummy.next;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
        ListNode* dummy = new ListNode();
        ListNode* curr = dummy;
        while (list1 && list2) {
            if (list1->val <= list2->val) {
                curr->next = list1;
                list1 = list1->next;
            } else {
                curr->next = list2;
                list2 = list2->next;
            }
            curr = curr->next;
        }
        curr->next = list1 ? list1 : list2;
        return dummy->next;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func mergeTwoLists(list1 *ListNode, list2 *ListNode) *ListNode {
    dummy := &ListNode{}
    curr := dummy
    for list1 != nil && list2 != nil {
        if list1.Val <= list2.Val {
            curr.Next = list1
            list1 = list1.Next
        } else {
            curr.Next = list2
            list2 = list2.Next
        }
        curr = curr.Next
    }
    if list1 != nil {
        curr.Next = list1
    } else {
        curr.Next = list2
    }
    return dummy.Next
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for singly-linked list.
 * class ListNode {
 *     val: number
 *     next: ListNode | null
 *     constructor(val?: number, next?: ListNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.next = (next===undefined ? null : next)
 *     }
 * }
 */

function mergeTwoLists(list1: ListNode | null, list2: ListNode | null): ListNode | null {
    const dummy = new ListNode(0);
    let cur = dummy;
    while (list1 != null && list2 != null) {
        if (list1.val < list2.val) {
            cur.next = list1;
            list1 = list1.next;
        } else {
            cur.next = list2;
            list2 = list2.next;
        }
        cur = cur.next;
    }
    cur.next = list1 || list2;
    return dummy.next;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
//   pub val: i32,
//   pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
//   #[inline]
//   fn new(val: i32) -> Self {
//     ListNode {
//       next: None,
//       val
//     }
//   }
// }
impl Solution {
    pub fn merge_two_lists(
        mut list1: Option<Box<ListNode>>,
        mut list2: Option<Box<ListNode>>,
    ) -> Option<Box<ListNode>> {
        let mut new_list = ListNode::new(0);
        let mut cur = &mut new_list;
        while list1.is_some() && list2.is_some() {
            let (l1, l2) = (list1.as_deref_mut().unwrap(), list2.as_deref_mut().unwrap());
            if l1.val < l2.val {
                let next = l1.next.take();
                cur.next = list1.take();
                list1 = next;
            } else {
                let next = l2.next.take();
                cur.next = list2.take();
                list2 = next;
            }
            cur = cur.next.as_deref_mut().unwrap();
        }
        cur.next = list1.or(list2);
        new_list.next
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for singly-linked list.
 * function ListNode(val, next) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.next = (next===undefined ? null : next)
 * }
 */
/**
 * @param {ListNode} list1
 * @param {ListNode} list2
 * @return {ListNode}
 */
var mergeTwoLists = function (list1, list2) {
    const dummy = new ListNode();
    let curr = dummy;
    while (list1 && list2) {
        if (list1.val <= list2.val) {
            curr.next = list1;
            list1 = list1.next;
        } else {
            curr.next = list2;
            list2 = list2.next;
        }
        curr = curr.next;
    }
    curr.next = list1 || list2;
    return dummy.next;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Definition for singly-linked list.
# class ListNode {
#     public $val;
#     public $next;
#     public function __construct($val = 0, $next = null)
#     {
#         $this->val = $val;
#         $this->next = $next;
#     }
# }

class Solution {
    /**
     * @param ListNode $list1
     * @param ListNode $list2
     * @return ListNode
     */

    function mergeTwoLists($list1, $list2) {
        $dummy = new ListNode(0);
        $current = $dummy;

        while ($list1 != null && $list2 != null) {
            if ($list1->val <= $list2->val) {
                $current->next = $list1;
                $list1 = $list1->next;
            } else {
                $current->next = $list2;
                $list2 = $list2->next;
            }
            $current = $current->next;
        }
        if ($list1 != null) {
            $current->next = $list1;
        } elseif ($list2 != null) {
            $current->next = $list2;
        }
        return $dummy->next;
    }
}

评论