204. 计数质数
题目描述
给定整数 n
,返回 所有小于非负整数 n
的质数的数量 。
示例 1:
输入:n = 10 输出:4 解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0 输出:0
示例 3:
输入:n = 1 输出:0
提示:
0 <= n <= 5 * 106
解法
方法一:埃氏筛
如果 $x$ 是质数,那么大于 $x$ 的 $x$ 的倍数 $2x$,$3x$,… 一定不是质数,因此我们可以从这里入手。
设 $primes[i]$ 表示数 $i$ 是不是质数,如果是质数则为 $true$,否则为 $false$。
我们在 $[2,n]$ 范围内顺序遍历每个数 $i$,如果这个数为质数($primes[i]==true$),质数个数增 1,然后将其所有的倍数 $j$ 都标记为合数(除了该质数本身),即 $primes[j]=false$,这样在运行结束的时候我们即能知道质数的个数。
时间复杂度 $O(nloglogn)$。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|