题目描述
编写一个算法来判断一个数 n
是不是快乐数。
「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n
是 快乐数 就返回 true
;不是,则返回 false
。
示例 1:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:
输入:n = 2
输出:false
提示:
解法
方法一:哈希表 + 模拟
将每次转换后的数字存入哈希表,如果出现重复数字,说明进入了循环,不是快乐数。否则,如果转换后的数字为 $1$,说明是快乐数。
时间复杂度 $O(\log n)$,空间复杂度 $O(\log n)$。
方法二:快慢指针
与判断链表是否存在环原理一致。如果 $n$ 是快乐数,那么快指针最终会与慢指针相遇,且相遇时的数字为 $1$;否则,快指针最终会与慢指针相遇,且相遇时的数字不为 $1$。
因此,最后判断快慢指针相遇时的数字是否为 $1$ 即可。
时间复杂度 $O(\log n)$,空间复杂度 $O(1)$。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def isHappy(self, n: int) -> bool:
def next(x):
y = 0
while x:
x, v = divmod(x, 10)
y += v * v
return y
slow, fast = n, next(n)
while slow != fast:
slow, fast = next(slow), next(next(fast))
return slow == 1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public boolean isHappy(int n) {
int slow = n, fast = next(n);
while (slow != fast) {
slow = next(slow);
fast = next(next(fast));
}
return slow == 1;
}
private int next(int x) {
int y = 0;
for (; x > 0; x /= 10) {
y += (x % 10) * (x % 10);
}
return y;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public:
bool isHappy(int n) {
auto next = [](int x) {
int y = 0;
for (; x; x /= 10) {
y += pow(x % 10, 2);
}
return y;
};
int slow = n, fast = next(n);
while (slow != fast) {
slow = next(slow);
fast = next(next(fast));
}
return slow == 1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | func isHappy(n int) bool {
next := func(x int) (y int) {
for ; x > 0; x /= 10 {
y += (x % 10) * (x % 10)
}
return
}
slow, fast := n, next(n)
for slow != fast {
slow = next(slow)
fast = next(next(fast))
}
return slow == 1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function isHappy(n: number): boolean {
const getNext = (n: number) => {
let res = 0;
while (n !== 0) {
res += (n % 10) ** 2;
n = Math.floor(n / 10);
}
return res;
};
let slow = n;
let fast = getNext(n);
while (slow !== fast) {
slow = getNext(slow);
fast = getNext(getNext(fast));
}
return fast === 1;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | impl Solution {
pub fn is_happy(n: i32) -> bool {
let get_next = |mut n: i32| {
let mut res = 0;
while n != 0 {
res += (n % 10).pow(2);
n /= 10;
}
res
};
let mut slow = n;
let mut fast = get_next(n);
while slow != fast {
slow = get_next(slow);
fast = get_next(get_next(fast));
}
slow == 1
}
}
|