跳转至

197. 上升的温度

题目描述

表: Weather

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| recordDate    | date    |
| temperature   | int     |
+---------------+---------+
id 是该表具有唯一值的列。
没有具有相同 recordDate 的不同行。
该表包含特定日期的温度信息

 

编写解决方案,找出与之前(昨天的)日期相比温度更高的所有日期的 id

返回结果 无顺序要求

结果格式如下例子所示。

 

示例 1:

输入:
Weather 表:
+----+------------+-------------+
| id | recordDate | Temperature |
+----+------------+-------------+
| 1  | 2015-01-01 | 10          |
| 2  | 2015-01-02 | 25          |
| 3  | 2015-01-03 | 20          |
| 4  | 2015-01-04 | 30          |
+----+------------+-------------+
输出:
+----+
| id |
+----+
| 2  |
| 4  |
+----+
解释:
2015-01-02 的温度比前一天高(10 -> 25)
2015-01-04 的温度比前一天高(20 -> 30)

解法

方法一:自连接 + DATEDIFF/SUBDATE 函数

我们可以通过自连接的方式,将 Weather 表中的每一行与它的前一行进行比较,如果温度更高,并且日期相差一天,那么就是我们要找的结果。

1
2
3
4
5
6
7
8
import pandas as pd


def rising_temperature(weather: pd.DataFrame) -> pd.DataFrame:
    weather.sort_values(by="recordDate", inplace=True)
    return weather[
        (weather.temperature.diff() > 0) & (weather.recordDate.diff().dt.days == 1)
    ][["id"]]
1
2
3
4
5
6
# Write your MySQL query statement below
SELECT w1.id
FROM
    Weather AS w1
    JOIN Weather AS w2
        ON DATEDIFF(w1.recordDate, w2.recordDate) = 1 AND w1.temperature > w2.temperature;

方法二

1
2
3
4
5
6
# Write your MySQL query statement below
SELECT w1.id
FROM
    Weather AS w1
    JOIN Weather AS w2
        ON SUBDATE(w1.recordDate, 1) = w2.recordDate AND w1.temperature > w2.temperature;

评论