1955. 统计特殊子序列的数目
题目描述
特殊序列 是由 正整数 个 0
,紧接着 正整数 个 1
,最后 正整数 个 2
组成的序列。
- 比方说,
[0,1,2]
和[0,0,1,1,1,2]
是特殊序列。 - 相反,
[2,1,0]
,[1]
和[0,1,2,0]
就不是特殊序列。
给你一个数组 nums
(仅 包含整数 0
,1
和 2
),请你返回 不同特殊子序列的数目 。由于答案可能很大,请你将它对 109 + 7
取余 后返回。
一个数组的 子序列 是从原数组中删除零个或者若干个元素后,剩下元素不改变顺序得到的序列。如果两个子序列的 下标集合 不同,那么这两个子序列是 不同的 。
示例 1:
输入:nums = [0,1,2,2] 输出:3 解释:特殊子序列为 [0,1,2,2],[0,1,2,2] 和 [0,1,2,2] 。
示例 2:
输入:nums = [2,2,0,0] 输出:0 解释:数组 [2,2,0,0] 中没有特殊子序列。
示例 3:
输入:nums = [0,1,2,0,1,2] 输出:7 解释:特殊子序列包括: - [0,1,2,0,1,2] - [0,1,2,0,1,2] - [0,1,2,0,1,2] - [0,1,2,0,1,2] - [0,1,2,0,1,2] - [0,1,2,0,1,2] - [0,1,2,0,1,2]
提示:
1 <= nums.length <= 105
0 <= nums[i] <= 2
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示前 $i+1$ 个元素中,以 $j$ 结尾的特殊子序列的个数。初始时 $f[i][j]=0$,如果 $nums[0]=0$,则 $f[0][0]=1$。
对于 $i \gt 0$,我们考虑 $nums[i]$ 的值:
如果 $nums[i] = 0$:如果我们不选择 $nums[i]$,则 $f[i][0] = f[i-1][0]$;如果我们选择 $nums[i]$,那么 $f[i][0]=f[i-1][0]+1$,因为我们可以在任何一个以 $0$ 结尾的特殊子序列后面加上一个 $0$ 得到一个新的特殊子序列,也可以将 $nums[i]$ 单独作为一个特殊子序列。因此 $f[i][0] = 2 \times f[i - 1][0] + 1$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。
如果 $nums[i] = 1$:如果我们不选择 $nums[i]$,则 $f[i][1] = f[i-1][1]$;如果我们选择 $nums[i]$,那么 $f[i][1]=f[i-1][1]+f[i-1][0]$,因为我们可以在任何一个以 $0$ 或 $1$ 结尾的特殊子序列后面加上一个 $1$ 得到一个新的特殊子序列。因此 $f[i][1] = f[i-1][1] + 2 \times f[i - 1][0]$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。
如果 $nums[i] = 2$:如果我们不选择 $nums[i]$,则 $f[i][2] = f[i-1][2]$;如果我们选择 $nums[i]$,那么 $f[i][2]=f[i-1][2]+f[i-1][1]$,因为我们可以在任何一个以 $1$ 或 $2$ 结尾的特殊子序列后面加上一个 $2$ 得到一个新的特殊子序列。因此 $f[i][2] = f[i-1][2] + 2 \times f[i - 1][1]$。其余的 $f[i][j]$ 与 $f[i-1][j]$ 相等。
综上,我们可以得到如下的状态转移方程:
$$ \begin{aligned} f[i][0] &= 2 \times f[i - 1][0] + 1, \quad nums[i] = 0 \ f[i][1] &= f[i-1][1] + 2 \times f[i - 1][0], \quad nums[i] = 1 \ f[i][2] &= f[i-1][2] + 2 \times f[i - 1][1], \quad nums[i] = 2 \ f[i][j] &= f[i-1][j], \quad nums[i] \neq j \end{aligned} $$
最终的答案即为 $f[n-1][2]$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
我们注意到,上述的状态转移方程中,$f[i][j]$ 的值仅与 $f[i-1][j]$ 有关,因此我们可以去掉第一维,将空间复杂度优化到 $O(1)$。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
方法二
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|