题目描述
给你两个整数 m
和 n
。构造一个 m x n
的网格,其中每个单元格最开始是白色。请你用 红、绿、蓝 三种颜色为每个单元格涂色。所有单元格都需要被涂色。
涂色方案需要满足:不存在相邻两个单元格颜色相同的情况 。返回网格涂色的方法数。因为答案可能非常大, 返回 对 109 + 7
取余 的结果。
示例 1:
输入:m = 1, n = 1
输出:3
解释:如上图所示,存在三种可能的涂色方案。
示例 2:
输入:m = 1, n = 2
输出:6
解释:如上图所示,存在六种可能的涂色方案。
示例 3:
输入:m = 5, n = 5
输出:580986
提示:
1 <= m <= 5
1 <= n <= 1000
解法
方法一:状态压缩 + 动态规划
我们注意到,网格的行数不超过 $5$,那么一列中最多有 $3^5=243$ 种不同的颜色方案。
因此,我们定义 $f[i][j]$ 表示前 $i$ 列中,第 $i$ 列的涂色状态为 $j$ 的方案数。状态 $f[i][j]$ 由 $f[i - 1][k]$ 转移而来,其中 $k$ 是第 $i - 1$ 列的涂色状态,且 $k$ 和 $j$ 满足不同颜色相邻的要求。即:
$$
f[i][j] = \sum_{k \in \textit{valid}(j)} f[i - 1][k]
$$
其中 $\textit{valid}(j)$ 表示状态 $j$ 的所有合法前驱状态。
最终的答案即为 $f[n][j]$ 的总和,其中 $j$ 是任意合法的状态。
我们注意到,$f[i][j]$ 只和 $f[i - 1][k]$ 有关,因此我们可以使用滚动数组优化空间复杂度。
时间复杂度 $O((m + n) \times 3^{2m})$,空间复杂度 $O(3^m)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | class Solution:
def colorTheGrid(self, m: int, n: int) -> int:
def f1(x: int) -> bool:
last = -1
for _ in range(m):
if x % 3 == last:
return False
last = x % 3
x //= 3
return True
def f2(x: int, y: int) -> bool:
for _ in range(m):
if x % 3 == y % 3:
return False
x, y = x // 3, y // 3
return True
mod = 10**9 + 7
mx = 3**m
valid = {i for i in range(mx) if f1(i)}
d = defaultdict(list)
for x in valid:
for y in valid:
if f2(x, y):
d[x].append(y)
f = [int(i in valid) for i in range(mx)]
for _ in range(n - 1):
g = [0] * mx
for i in valid:
for j in d[i]:
g[i] = (g[i] + f[j]) % mod
f = g
return sum(f) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 | class Solution {
private int m;
public int colorTheGrid(int m, int n) {
this.m = m;
final int mod = (int) 1e9 + 7;
int mx = (int) Math.pow(3, m);
Set<Integer> valid = new HashSet<>();
int[] f = new int[mx];
for (int i = 0; i < mx; ++i) {
if (f1(i)) {
valid.add(i);
f[i] = 1;
}
}
Map<Integer, List<Integer>> d = new HashMap<>();
for (int i : valid) {
for (int j : valid) {
if (f2(i, j)) {
d.computeIfAbsent(i, k -> new ArrayList<>()).add(j);
}
}
}
for (int k = 1; k < n; ++k) {
int[] g = new int[mx];
for (int i : valid) {
for (int j : d.getOrDefault(i, List.of())) {
g[i] = (g[i] + f[j]) % mod;
}
}
f = g;
}
int ans = 0;
for (int x : f) {
ans = (ans + x) % mod;
}
return ans;
}
private boolean f1(int x) {
int last = -1;
for (int i = 0; i < m; ++i) {
if (x % 3 == last) {
return false;
}
last = x % 3;
x /= 3;
}
return true;
}
private boolean f2(int x, int y) {
for (int i = 0; i < m; ++i) {
if (x % 3 == y % 3) {
return false;
}
x /= 3;
y /= 3;
}
return true;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | class Solution {
public:
int colorTheGrid(int m, int n) {
auto f1 = [&](int x) {
int last = -1;
for (int i = 0; i < m; ++i) {
if (x % 3 == last) {
return false;
}
last = x % 3;
x /= 3;
}
return true;
};
auto f2 = [&](int x, int y) {
for (int i = 0; i < m; ++i) {
if (x % 3 == y % 3) {
return false;
}
x /= 3;
y /= 3;
}
return true;
};
const int mod = 1e9 + 7;
int mx = pow(3, m);
unordered_set<int> valid;
vector<int> f(mx);
for (int i = 0; i < mx; ++i) {
if (f1(i)) {
valid.insert(i);
f[i] = 1;
}
}
unordered_map<int, vector<int>> d;
for (int i : valid) {
for (int j : valid) {
if (f2(i, j)) {
d[i].push_back(j);
}
}
}
for (int k = 1; k < n; ++k) {
vector<int> g(mx);
for (int i : valid) {
for (int j : d[i]) {
g[i] = (g[i] + f[j]) % mod;
}
}
f = move(g);
}
int ans = 0;
for (int x : f) {
ans = (ans + x) % mod;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | func colorTheGrid(m int, n int) (ans int) {
f1 := func(x int) bool {
last := -1
for i := 0; i < m; i++ {
if x%3 == last {
return false
}
last = x % 3
x /= 3
}
return true
}
f2 := func(x, y int) bool {
for i := 0; i < m; i++ {
if x%3 == y%3 {
return false
}
x /= 3
y /= 3
}
return true
}
mx := int(math.Pow(3, float64(m)))
valid := map[int]bool{}
f := make([]int, mx)
for i := 0; i < mx; i++ {
if f1(i) {
valid[i] = true
f[i] = 1
}
}
d := map[int][]int{}
for i := range valid {
for j := range valid {
if f2(i, j) {
d[i] = append(d[i], j)
}
}
}
const mod int = 1e9 + 7
for k := 1; k < n; k++ {
g := make([]int, mx)
for i := range valid {
for _, j := range d[i] {
g[i] = (g[i] + f[j]) % mod
}
}
f = g
}
for _, x := range f {
ans = (ans + x) % mod
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | function colorTheGrid(m: number, n: number): number {
const f1 = (x: number): boolean => {
let last = -1;
for (let i = 0; i < m; ++i) {
if (x % 3 === last) {
return false;
}
last = x % 3;
x = Math.floor(x / 3);
}
return true;
};
const f2 = (x: number, y: number): boolean => {
for (let i = 0; i < m; ++i) {
if (x % 3 === y % 3) {
return false;
}
x = Math.floor(x / 3);
y = Math.floor(y / 3);
}
return true;
};
const mx = 3 ** m;
const valid = new Set<number>();
const f: number[] = Array(mx).fill(0);
for (let i = 0; i < mx; ++i) {
if (f1(i)) {
valid.add(i);
f[i] = 1;
}
}
const d: Map<number, number[]> = new Map();
for (const i of valid) {
for (const j of valid) {
if (f2(i, j)) {
d.set(i, (d.get(i) || []).concat(j));
}
}
}
const mod = 10 ** 9 + 7;
for (let k = 1; k < n; ++k) {
const g: number[] = Array(mx).fill(0);
for (const i of valid) {
for (const j of d.get(i) || []) {
g[i] = (g[i] + f[j]) % mod;
}
}
f.splice(0, f.length, ...g);
}
let ans = 0;
for (const x of f) {
ans = (ans + x) % mod;
}
return ans;
}
|