1894. 找到需要补充粉笔的学生编号
题目描述
一个班级里有 n
个学生,编号为 0
到 n - 1
。每个学生会依次回答问题,编号为 0
的学生先回答,然后是编号为 1
的学生,以此类推,直到编号为 n - 1
的学生,然后老师会重复这个过程,重新从编号为 0
的学生开始回答问题。
给你一个长度为 n
且下标从 0
开始的整数数组 chalk
和一个整数 k
。一开始粉笔盒里总共有 k
支粉笔。当编号为 i
的学生回答问题时,他会消耗 chalk[i]
支粉笔。如果剩余粉笔数量 严格小于 chalk[i]
,那么学生 i
需要 补充 粉笔。
请你返回需要 补充 粉笔的学生 编号 。
示例 1:
输入:chalk = [5,1,5], k = 22 输出:0 解释:学生消耗粉笔情况如下: - 编号为 0 的学生使用 5 支粉笔,然后 k = 17 。 - 编号为 1 的学生使用 1 支粉笔,然后 k = 16 。 - 编号为 2 的学生使用 5 支粉笔,然后 k = 11 。 - 编号为 0 的学生使用 5 支粉笔,然后 k = 6 。 - 编号为 1 的学生使用 1 支粉笔,然后 k = 5 。 - 编号为 2 的学生使用 5 支粉笔,然后 k = 0 。 编号为 0 的学生没有足够的粉笔,所以他需要补充粉笔。
示例 2:
输入:chalk = [3,4,1,2], k = 25 输出:1 解释:学生消耗粉笔情况如下: - 编号为 0 的学生使用 3 支粉笔,然后 k = 22 。 - 编号为 1 的学生使用 4 支粉笔,然后 k = 18 。 - 编号为 2 的学生使用 1 支粉笔,然后 k = 17 。 - 编号为 3 的学生使用 2 支粉笔,然后 k = 15 。 - 编号为 0 的学生使用 3 支粉笔,然后 k = 12 。 - 编号为 1 的学生使用 4 支粉笔,然后 k = 8 。 - 编号为 2 的学生使用 1 支粉笔,然后 k = 7 。 - 编号为 3 的学生使用 2 支粉笔,然后 k = 5 。 - 编号为 0 的学生使用 3 支粉笔,然后 k = 2 。 编号为 1 的学生没有足够的粉笔,所以他需要补充粉笔。
提示:
chalk.length == n
1 <= n <= 105
1 <= chalk[i] <= 105
1 <= k <= 109
解法
方法一:求和取余 + 模拟
由于学生的回答是一轮一轮循环进行的,因此我们可以将所有学生需要消耗的粉笔数加起来,得到一个总数 $s$。然后我们对 $k$ 取 $s$ 的余数,即可知道最后一轮结束后剩余的粉笔数。
接下来,我们只需要模拟最后一轮即可。初始时,剩余的粉笔数为 $k$,编号为 $0$ 的学生开始回答问题。当剩余的粉笔数小于当前学生需要的粉笔数时,当前学生需要补充粉笔,我们直接返回当前学生的编号 $i$ 即可。否则,我们将剩余的粉笔数减去当前学生需要的粉笔数,并将当前学生的编号 $i$ 加一,进行下一次模拟。
时间复杂度 $O(n)$,其中 $n$ 是学生的数量。空间复杂度 $O(1)$。
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|