1763. 最长的美好子字符串
题目描述
当一个字符串 s
包含的每一种字母的大写和小写形式 同时 出现在 s
中,就称这个字符串 s
是 美好 字符串。比方说,"abABB"
是美好字符串,因为 'A'
和 'a'
同时出现了,且 'B'
和 'b'
也同时出现了。然而,"abA"
不是美好字符串因为 'b'
出现了,而 'B'
没有出现。
给你一个字符串 s
,请你返回 s
最长的 美好子字符串 。如果有多个答案,请你返回 最早 出现的一个。如果不存在美好子字符串,请你返回一个空字符串。
示例 1:
输入:s = "YazaAay" 输出:"aAa" 解释:"aAa" 是一个美好字符串,因为这个子串中仅含一种字母,其小写形式 'a' 和大写形式 'A' 也同时出现了。 "aAa" 是最长的美好子字符串。
示例 2:
输入:s = "Bb" 输出:"Bb" 解释:"Bb" 是美好字符串,因为 'B' 和 'b' 都出现了。整个字符串也是原字符串的子字符串。
示例 3:
输入:s = "c" 输出:"" 解释:没有美好子字符串。
示例 4:
输入:s = "dDzeE" 输出:"dD" 解释:"dD" 和 "eE" 都是最长美好子字符串。 由于有多个美好子字符串,返回 "dD" ,因为它出现得最早。
提示:
1 <= s.length <= 100
s
只包含大写和小写英文字母。
解法
方法一:枚举 + 哈希表
我们可以直接枚举所有子串的起点位置 $i$,找到以该位置所在的字符为首字符的所有子串,用哈希表 $s$ 记录子串的所有字符。
如果子串中存在一个字母找不到对应的大写字母或者小写字母,那么不满足条件,否则取最长的且最早出现的子串。
时间复杂度 $O(n^2 \times C)$,空间复杂度 $O(C)$。其中 $n$ 为字符串 $s$ 的长度,而 $C$ 为字符集的大小。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
方法二:枚举 + 位运算
与方法一类似,我们可以直接枚举所有子串的起点位置 $i$,找到以该位置所在的字符为首字符的所有子串,用两个整数 $lower$ 和 $upper$ 分别记录子串中小写字母和大写字母的出现情况。
判断子串是否满足条件,只需要判断 $lower$ 和 $upper$ 中对应的位是否都为 $1$ 即可。
时间复杂度 $O(n^2)$,空间复杂度 $O(1)$。其中 $n$ 为字符串 $s$ 的长度。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|