跳转至

173. 二叉搜索树迭代器

题目描述

实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器:

  • BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。
  • boolean hasNext() 如果向指针右侧遍历存在数字,则返回 true ;否则返回 false
  • int next()将指针向右移动,然后返回指针处的数字。

注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。

你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。

 

示例:

输入
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
输出
[null, 3, 7, true, 9, true, 15, true, 20, false]

解释
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // 返回 3
bSTIterator.next(); // 返回 7
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 9
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 15
bSTIterator.hasNext(); // 返回 True
bSTIterator.next(); // 返回 20
bSTIterator.hasNext(); // 返回 False

 

提示:

  • 树中节点的数目在范围 [1, 105]
  • 0 <= Node.val <= 106
  • 最多调用 105hasNextnext 操作

 

进阶:

  • 你可以设计一个满足下述条件的解决方案吗?next()hasNext() 操作均摊时间复杂度为 O(1) ,并使用 O(h) 内存。其中 h 是树的高度。

解法

方法一:递归

初始化数据时,递归中序遍历,将二叉搜索树每个结点的值保存在列表 vals 中。用 cur 指针记录外部即将遍历的位置,初始化为 0。

调用 next() 时,返回 vals[cur],同时 cur 指针自增。调用 hasNext() 时,判断 cur 指针是否已经达到 len(vals) 个数,若是,说明已经遍历结束,返回 false,否则返回 true。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class BSTIterator:
    def __init__(self, root: TreeNode):
        def inorder(root):
            if root:
                inorder(root.left)
                self.vals.append(root.val)
                inorder(root.right)

        self.cur = 0
        self.vals = []
        inorder(root)

    def next(self) -> int:
        res = self.vals[self.cur]
        self.cur += 1
        return res

    def hasNext(self) -> bool:
        return self.cur < len(self.vals)


# Your BSTIterator object will be instantiated and called as such:
# obj = BSTIterator(root)
# param_1 = obj.next()
# param_2 = obj.hasNext()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class BSTIterator {
    private int cur = 0;
    private List<Integer> vals = new ArrayList<>();

    public BSTIterator(TreeNode root) {
        inorder(root);
    }

    public int next() {
        return vals.get(cur++);
    }

    public boolean hasNext() {
        return cur < vals.size();
    }

    private void inorder(TreeNode root) {
        if (root != null) {
            inorder(root.left);
            vals.add(root.val);
            inorder(root.right);
        }
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator obj = new BSTIterator(root);
 * int param_1 = obj.next();
 * boolean param_2 = obj.hasNext();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class BSTIterator {
public:
    vector<int> vals;
    int cur;
    BSTIterator(TreeNode* root) {
        cur = 0;
        inorder(root);
    }

    int next() {
        return vals[cur++];
    }

    bool hasNext() {
        return cur < vals.size();
    }

    void inorder(TreeNode* root) {
        if (root) {
            inorder(root->left);
            vals.push_back(root->val);
            inorder(root->right);
        }
    }
};

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator* obj = new BSTIterator(root);
 * int param_1 = obj->next();
 * bool param_2 = obj->hasNext();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
type BSTIterator struct {
    stack []*TreeNode
}

func Constructor(root *TreeNode) BSTIterator {
    var stack []*TreeNode
    for ; root != nil; root = root.Left {
        stack = append(stack, root)
    }
    return BSTIterator{
        stack: stack,
    }
}

func (this *BSTIterator) Next() int {
    cur := this.stack[len(this.stack)-1]
    this.stack = this.stack[:len(this.stack)-1]
    for node := cur.Right; node != nil; node = node.Left {
        this.stack = append(this.stack, node)
    }
    return cur.Val
}

func (this *BSTIterator) HasNext() bool {
    return len(this.stack) > 0
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * obj := Constructor(root);
 * param_1 := obj.Next();
 * param_2 := obj.HasNext();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

class BSTIterator {
    private data: number[];
    private index: number;

    constructor(root: TreeNode | null) {
        this.index = 0;
        this.data = [];
        const dfs = (root: TreeNode | null) => {
            if (root == null) {
                return;
            }
            const { val, left, right } = root;
            dfs(left);
            this.data.push(val);
            dfs(right);
        };
        dfs(root);
    }

    next(): number {
        return this.data[this.index++];
    }

    hasNext(): boolean {
        return this.index < this.data.length;
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * var obj = new BSTIterator(root)
 * var param_1 = obj.next()
 * var param_2 = obj.hasNext()
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
struct BSTIterator {
    vals: Vec<i32>,
    index: usize,
}

use std::cell::RefCell;
use std::rc::Rc;
/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl BSTIterator {
    fn inorder(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) {
        if let Some(node) = root {
            let node = node.as_ref().borrow();
            Self::inorder(&node.left, res);
            res.push(node.val);
            Self::inorder(&node.right, res);
        }
    }

    fn new(root: Option<Rc<RefCell<TreeNode>>>) -> Self {
        let mut vals = vec![];
        Self::inorder(&root, &mut vals);
        BSTIterator { vals, index: 0 }
    }

    fn next(&mut self) -> i32 {
        self.index += 1;
        self.vals[self.index - 1]
    }

    fn has_next(&self) -> bool {
        self.index != self.vals.len()
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 */
var BSTIterator = function (root) {
    this.stack = [];
    for (; root != null; root = root.left) {
        this.stack.push(root);
    }
};

/**
 * @return {number}
 */
BSTIterator.prototype.next = function () {
    let cur = this.stack.pop();
    let node = cur.right;
    for (; node != null; node = node.left) {
        this.stack.push(node);
    }
    return cur.val;
};

/**
 * @return {boolean}
 */
BSTIterator.prototype.hasNext = function () {
    return this.stack.length > 0;
};

/**
 * Your BSTIterator object will be instantiated and called as such:
 * var obj = new BSTIterator(root)
 * var param_1 = obj.next()
 * var param_2 = obj.hasNext()
 */

方法二:栈迭代

初始化时,从根节点一路遍历所有左子节点,压入栈 stack 中。

调用 next()时,弹出栈顶元素 cur,获取 cur 的右子节点 node,若 node 不为空,一直循环压入左节点。最后返回 cur.val 即可。调用 hasNext() 时,判断 stack 是否为空,空则表示迭代结束。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class BSTIterator:
    def __init__(self, root: TreeNode):
        self.stack = []
        while root:
            self.stack.append(root)
            root = root.left

    def next(self) -> int:
        cur = self.stack.pop()
        node = cur.right
        while node:
            self.stack.append(node)
            node = node.left
        return cur.val

    def hasNext(self) -> bool:
        return len(self.stack) > 0


# Your BSTIterator object will be instantiated and called as such:
# obj = BSTIterator(root)
# param_1 = obj.next()
# param_2 = obj.hasNext()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class BSTIterator {
    private Deque<TreeNode> stack = new LinkedList<>();

    public BSTIterator(TreeNode root) {
        for (; root != null; root = root.left) {
            stack.offerLast(root);
        }
    }

    public int next() {
        TreeNode cur = stack.pollLast();
        for (TreeNode node = cur.right; node != null; node = node.left) {
            stack.offerLast(node);
        }
        return cur.val;
    }

    public boolean hasNext() {
        return !stack.isEmpty();
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator obj = new BSTIterator(root);
 * int param_1 = obj.next();
 * boolean param_2 = obj.hasNext();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class BSTIterator {
public:
    stack<TreeNode*> stack;
    BSTIterator(TreeNode* root) {
        for (; root != nullptr; root = root->left) {
            stack.push(root);
        }
    }

    int next() {
        TreeNode* cur = stack.top();
        stack.pop();
        TreeNode* node = cur->right;
        for (; node != nullptr; node = node->left) {
            stack.push(node);
        }
        return cur->val;
    }

    bool hasNext() {
        return !stack.empty();
    }
};

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator* obj = new BSTIterator(root);
 * int param_1 = obj->next();
 * bool param_2 = obj->hasNext();
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

class BSTIterator {
    private stack: TreeNode[];

    constructor(root: TreeNode | null) {
        this.stack = [];
        const dfs = (root: TreeNode | null) => {
            if (root == null) {
                return;
            }
            this.stack.push(root);
            dfs(root.left);
        };
        dfs(root);
    }

    next(): number {
        const { val, right } = this.stack.pop();
        if (right) {
            let cur = right;
            while (cur != null) {
                this.stack.push(cur);
                cur = cur.left;
            }
        }
        return val;
    }

    hasNext(): boolean {
        return this.stack.length !== 0;
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * var obj = new BSTIterator(root)
 * var param_1 = obj.next()
 * var param_2 = obj.hasNext()
 */
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
struct BSTIterator {
    stack: Vec<Option<Rc<RefCell<TreeNode>>>>,
}

use std::cell::RefCell;
use std::rc::Rc;
/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl BSTIterator {
    fn dfs(
        mut root: Option<Rc<RefCell<TreeNode>>>,
        stack: &mut Vec<Option<Rc<RefCell<TreeNode>>>>,
    ) {
        if root.is_some() {
            let left = root.as_mut().unwrap().borrow_mut().left.take();
            stack.push(root);
            Self::dfs(left, stack);
        }
    }

    fn new(root: Option<Rc<RefCell<TreeNode>>>) -> Self {
        let mut stack = vec![];
        Self::dfs(root, &mut stack);
        BSTIterator { stack }
    }

    fn next(&mut self) -> i32 {
        let node = self.stack.pop().unwrap().unwrap();
        let mut node = node.borrow_mut();
        if node.right.is_some() {
            Self::dfs(node.right.take(), &mut self.stack);
        }
        node.val
    }

    fn has_next(&self) -> bool {
        self.stack.len() != 0
    }
}

评论