1711. 大餐计数
题目描述
大餐 是指 恰好包含两道不同餐品 的一餐,其美味程度之和等于 2 的幂。
你可以搭配 任意 两道餐品做一顿大餐。
给你一个整数数组 deliciousness
,其中 deliciousness[i]
是第 i
道餐品的美味程度,返回你可以用数组中的餐品做出的不同 大餐 的数量。结果需要对 109 + 7
取余。
注意,只要餐品下标不同,就可以认为是不同的餐品,即便它们的美味程度相同。
示例 1:
输入:deliciousness = [1,3,5,7,9] 输出:4 解释:大餐的美味程度组合为 (1,3) 、(1,7) 、(3,5) 和 (7,9) 。 它们各自的美味程度之和分别为 4 、8 、8 和 16 ,都是 2 的幂。
示例 2:
输入:deliciousness = [1,1,1,3,3,3,7] 输出:15 解释:大餐的美味程度组合为 3 种 (1,1) ,9 种 (1,3) ,和 3 种 (1,7) 。
提示:
1 <= deliciousness.length <= 105
0 <= deliciousness[i] <= 220
解法
方法一:哈希表 + 枚举二的幂
根据题意,我们需要统计数组中两个数的和为 $2$ 的幂的组合数。直接暴力枚举所有的组合数,时间复杂度为 $O(n^2)$ ,肯定会超时。
我们可以遍历数组,用哈希表 $cnt$ 维护数组中每个元素 $d$ 出现的次数。
对于每个元素,我们从小到大枚举二的幂次方 $s$ 作为两数之和,将哈希表中 $s - d$ 出现的次数累加到答案中。然后将当前元素 $d$ 出现的次数加一。
遍历结束后,返回答案即可。
时间复杂度 $O(n\times \log M)$,其中 $n$ 是数组 deliciousness
的长度,而 $M$ 是元素的上限,对于本题,上限 $M=2^{20}$。
我们也可以先用哈希表 $cnt$ 统计数组中每个元素出现的次数。
然后从小到大枚举二的幂次方 $s$ 作为两数之和,对于每个 $s$,遍历哈希表每个键值对 $(a, m)$,如果 $s - a$ 也在哈希表中,且 $s - a \neq a$,则答案加上 $m \times cnt[s - a]$;如果 $s - a = a$,则答案加上 $m \times (m - 1)$。
最后,将答案除以 $2$ 之后,模 $10^9 + 7$,返回即可。
时间复杂度与上面的方法相同。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
方法二
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|