跳转至

1707. 与数组中元素的最大异或值

题目描述

给你一个由非负整数组成的数组 nums 。另有一个查询数组 queries ,其中 queries[i] = [xi, mi]

i 个查询的答案是 xi 和任何 nums 数组中不超过 mi 的元素按位异或(XOR)得到的最大值。换句话说,答案是 max(nums[j] XOR xi) ,其中所有 j 均满足 nums[j] <= mi 。如果 nums 中的所有元素都大于 mi,最终答案就是 -1

返回一个整数数组 answer 作为查询的答案,其中 answer.length == queries.length answer[i] 是第 i 个查询的答案。

 

示例 1:

输入:nums = [0,1,2,3,4], queries = [[3,1],[1,3],[5,6]]
输出:[3,3,7]
解释:
1) 0 和 1 是仅有的两个不超过 1 的整数。0 XOR 3 = 3 而 1 XOR 3 = 2 。二者中的更大值是 3 。
2) 1 XOR 2 = 3.
3) 5 XOR 2 = 7.

示例 2:

输入:nums = [5,2,4,6,6,3], queries = [[12,4],[8,1],[6,3]]
输出:[15,-1,5]

 

提示:

  • 1 <= nums.length, queries.length <= 105
  • queries[i].length == 2
  • 0 <= nums[j], xi, mi <= 109

解法

方法一:离线查询 + 0-1 字典树

根据题目描述我们知道,每个查询相互独立,并且查询的结果与 $nums$ 中的元素顺序无关,因此,我们考虑将所有的查询按照 $m_i$ 从小到大排序,并且将 $nums$ 从小到大排序。

接下来,我们使用一个 $0-1$ 字典树来维护 $nums$ 中的元素。我们用一个指针 $j$ 来记录当前字典树中的元素,初始时 $j=0$。对于每个查询 $[x_i, m_i]$,我们不断地将 $nums$ 中的元素插入到字典树中,直到 $nums[j] > m_i$,此时我们就可以在字典树中查询到所有不超过 $m_i$ 的元素,我们将其中与 $x_i$ 异或值最大的元素的异或值作为答案。

时间复杂度 $O(m \times \log m + n \times (\log n + \log M))$,空间复杂度 $O(n \times \log M)$,其中 $m$ 和 $n$ 分别是数组 $nums$ 和 $queries$ 的长度,而 $M$ 是数组 $nums$ 中的最大值,本题中 $M \le 10^9$。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Trie:
    __slots__ = ["children"]

    def __init__(self):
        self.children = [None] * 2

    def insert(self, x: int):
        node = self
        for i in range(30, -1, -1):
            v = x >> i & 1
            if node.children[v] is None:
                node.children[v] = Trie()
            node = node.children[v]

    def search(self, x: int) -> int:
        node = self
        ans = 0
        for i in range(30, -1, -1):
            v = x >> i & 1
            if node.children[v ^ 1]:
                ans |= 1 << i
                node = node.children[v ^ 1]
            elif node.children[v]:
                node = node.children[v]
            else:
                return -1
        return ans


class Solution:
    def maximizeXor(self, nums: List[int], queries: List[List[int]]) -> List[int]:
        trie = Trie()
        nums.sort()
        j, n = 0, len(queries)
        ans = [-1] * n
        for i, (x, m) in sorted(zip(range(n), queries), key=lambda x: x[1][1]):
            while j < len(nums) and nums[j] <= m:
                trie.insert(nums[j])
                j += 1
            ans[i] = trie.search(x)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class Trie {
    private Trie[] children = new Trie[2];

    public void insert(int x) {
        Trie node = this;
        for (int i = 30; i >= 0; --i) {
            int v = x >> i & 1;
            if (node.children[v] == null) {
                node.children[v] = new Trie();
            }
            node = node.children[v];
        }
    }

    public int search(int x) {
        Trie node = this;
        int ans = 0;
        for (int i = 30; i >= 0; --i) {
            int v = x >> i & 1;
            if (node.children[v ^ 1] != null) {
                ans |= 1 << i;
                node = node.children[v ^ 1];
            } else if (node.children[v] != null) {
                node = node.children[v];
            } else {
                return -1;
            }
        }
        return ans;
    }
}

class Solution {
    public int[] maximizeXor(int[] nums, int[][] queries) {
        Arrays.sort(nums);
        int n = queries.length;
        Integer[] idx = new Integer[n];
        for (int i = 0; i < n; ++i) {
            idx[i] = i;
        }
        Arrays.sort(idx, (i, j) -> queries[i][1] - queries[j][1]);
        int[] ans = new int[n];
        Trie trie = new Trie();
        int j = 0;
        for (int i : idx) {
            int x = queries[i][0], m = queries[i][1];
            while (j < nums.length && nums[j] <= m) {
                trie.insert(nums[j++]);
            }
            ans[i] = trie.search(x);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class Trie {
private:
    Trie* children[2];

public:
    Trie()
        : children{nullptr, nullptr} {}

    void insert(int x) {
        Trie* node = this;
        for (int i = 30; ~i; --i) {
            int v = (x >> i) & 1;
            if (!node->children[v]) {
                node->children[v] = new Trie();
            }
            node = node->children[v];
        }
    }

    int search(int x) {
        Trie* node = this;
        int ans = 0;
        for (int i = 30; ~i; --i) {
            int v = (x >> i) & 1;
            if (node->children[v ^ 1]) {
                ans |= 1 << i;
                node = node->children[v ^ 1];
            } else if (node->children[v]) {
                node = node->children[v];
            } else {
                return -1;
            }
        }
        return ans;
    }
};

class Solution {
public:
    vector<int> maximizeXor(vector<int>& nums, vector<vector<int>>& queries) {
        sort(nums.begin(), nums.end());
        int n = queries.size();
        vector<int> idx(n);
        iota(idx.begin(), idx.end(), 0);
        sort(idx.begin(), idx.end(), [&](int i, int j) { return queries[i][1] < queries[j][1]; });
        vector<int> ans(n);
        Trie trie;
        int j = 0;
        for (int i : idx) {
            int x = queries[i][0], m = queries[i][1];
            while (j < nums.size() && nums[j] <= m) {
                trie.insert(nums[j++]);
            }
            ans[i] = trie.search(x);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
type Trie struct {
    children [2]*Trie
}

func NewTrie() *Trie {
    return &Trie{}
}

func (t *Trie) insert(x int) {
    node := t
    for i := 30; i >= 0; i-- {
        v := x >> i & 1
        if node.children[v] == nil {
            node.children[v] = NewTrie()
        }
        node = node.children[v]
    }
}

func (t *Trie) search(x int) int {
    node := t
    ans := 0
    for i := 30; i >= 0; i-- {
        v := x >> i & 1
        if node.children[v^1] != nil {
            ans |= 1 << i
            node = node.children[v^1]
        } else if node.children[v] != nil {
            node = node.children[v]
        } else {
            return -1
        }
    }
    return ans
}

func maximizeXor(nums []int, queries [][]int) []int {
    sort.Ints(nums)
    n := len(queries)
    idx := make([]int, n)
    for i := 0; i < n; i++ {
        idx[i] = i
    }
    sort.Slice(idx, func(i, j int) bool {
        return queries[idx[i]][1] < queries[idx[j]][1]
    })
    ans := make([]int, n)
    trie := NewTrie()
    j := 0
    for _, i := range idx {
        x, m := queries[i][0], queries[i][1]
        for j < len(nums) && nums[j] <= m {
            trie.insert(nums[j])
            j++
        }
        ans[i] = trie.search(x)
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class Trie {
    children: (Trie | null)[];

    constructor() {
        this.children = [null, null];
    }

    insert(x: number): void {
        let node: Trie | null = this;
        for (let i = 30; ~i; i--) {
            const v = (x >> i) & 1;
            if (node.children[v] === null) {
                node.children[v] = new Trie();
            }
            node = node.children[v] as Trie;
        }
    }

    search(x: number): number {
        let node: Trie | null = this;
        let ans = 0;
        for (let i = 30; ~i; i--) {
            const v = (x >> i) & 1;
            if (node.children[v ^ 1] !== null) {
                ans |= 1 << i;
                node = node.children[v ^ 1] as Trie;
            } else if (node.children[v] !== null) {
                node = node.children[v] as Trie;
            } else {
                return -1;
            }
        }
        return ans;
    }
}

function maximizeXor(nums: number[], queries: number[][]): number[] {
    nums.sort((a, b) => a - b);
    const n = queries.length;
    const idx = Array.from({ length: n }, (_, i) => i);
    idx.sort((i, j) => queries[i][1] - queries[j][1]);
    const ans: number[] = [];
    const trie = new Trie();
    let j = 0;
    for (const i of idx) {
        const x = queries[i][0];
        const m = queries[i][1];
        while (j < nums.length && nums[j] <= m) {
            trie.insert(nums[j++]);
        }
        ans[i] = trie.search(x);
    }
    return ans;
}

评论