题目描述
给你一个整数数组 nums
和一个整数 k
。你需要将这个数组划分到 k
个相同大小的子集中,使得同一个子集里面没有两个相同的元素。
一个子集的 不兼容性 是该子集里面最大值和最小值的差。
请你返回将数组分成 k
个子集后,各子集 不兼容性 的 和 的 最小值 ,如果无法分成分成 k
个子集,返回 -1
。
子集的定义是数组中一些数字的集合,对数字顺序没有要求。
示例 1:
输入:nums = [1,2,1,4], k = 2
输出:4
解释:最优的分配是 [1,2] 和 [1,4] 。
不兼容性和为 (2-1) + (4-1) = 4 。
注意到 [1,1] 和 [2,4] 可以得到更小的和,但是第一个集合有 2 个相同的元素,所以不可行。
示例 2:
输入:nums = [6,3,8,1,3,1,2,2], k = 4
输出:6
解释:最优的子集分配为 [1,2],[2,3],[6,8] 和 [1,3] 。
不兼容性和为 (2-1) + (3-2) + (8-6) + (3-1) = 6 。
示例 3:
输入:nums = [5,3,3,6,3,3], k = 3
输出:-1
解释:没办法将这些数字分配到 3 个子集且满足每个子集里没有相同数字。
提示:
1 <= k <= nums.length <= 16
nums.length
能被 k
整除。
1 <= nums[i] <= nums.length
解法
方法一:预处理 + 状态压缩 + 动态规划
不妨设划分后每个子集的大小为 $m$,那么 $m=\frac{n}{k}$,其中 $n$ 是数组的长度。
我们可以枚举所有的子集 $i$,其中 $i \in [0, 2^n)$,如果子集 $i$ 的二进制表示中有 $m$ 个 $1$,并且子集 $i$ 中的元素没有重复,那么我们就可以计算出子集 $i$ 的不兼容性,记为 $g[i]$,即 $g[i]=\max_{j \in i} {nums[j]} - \min_{j \in i} {nums[j]}$。
接下来,我们可以使用动态规划来求解。
我们定义 $f[i]$ 表示当前已经划分的子集状态为 $i$ 时,子集的不兼容性和的最小值。初始时 $f[0]=0$,表示没有任何元素被划分到子集中,其余 $f[i]=+\infty$。
对于状态 $i$,我们找出所有未被划分且不重复的元素,用一个状态 $mask$ 表示,如果状态 $mask$ 中的元素个数大于等于 $m$,那么我们就枚举 $mask$ 的所有子集 $j$,并且满足 $j \subset mask$,那么 $f[i \cup j]=\min {f[i \cup j], f[i]+g[j]}$。
最后,如果 $f[2^n-1]=+\infty$,那么说明无法划分成 $k$ 个子集,返回 $-1$,否则返回 $f[2^n-1]$。
时间复杂度 $O(3^n)$,空间复杂度 $O(2^n)$。其中 $n$ 是数组的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | class Solution:
def minimumIncompatibility(self, nums: List[int], k: int) -> int:
n = len(nums)
m = n // k
g = [-1] * (1 << n)
for i in range(1, 1 << n):
if i.bit_count() != m:
continue
s = set()
mi, mx = 20, 0
for j, x in enumerate(nums):
if i >> j & 1:
if x in s:
break
s.add(x)
mi = min(mi, x)
mx = max(mx, x)
if len(s) == m:
g[i] = mx - mi
f = [inf] * (1 << n)
f[0] = 0
for i in range(1 << n):
if f[i] == inf:
continue
s = set()
mask = 0
for j, x in enumerate(nums):
if (i >> j & 1) == 0 and x not in s:
s.add(x)
mask |= 1 << j
if len(s) < m:
continue
j = mask
while j:
if g[j] != -1:
f[i | j] = min(f[i | j], f[i] + g[j])
j = (j - 1) & mask
return f[-1] if f[-1] != inf else -1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 | class Solution {
public int minimumIncompatibility(int[] nums, int k) {
int n = nums.length;
int m = n / k;
int[] g = new int[1 << n];
Arrays.fill(g, -1);
for (int i = 1; i < 1 << n; ++i) {
if (Integer.bitCount(i) != m) {
continue;
}
Set<Integer> s = new HashSet<>();
int mi = 20, mx = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 1) {
if (!s.add(nums[j])) {
break;
}
mi = Math.min(mi, nums[j]);
mx = Math.max(mx, nums[j]);
}
}
if (s.size() == m) {
g[i] = mx - mi;
}
}
int[] f = new int[1 << n];
final int inf = 1 << 30;
Arrays.fill(f, inf);
f[0] = 0;
for (int i = 0; i < 1 << n; ++i) {
if (f[i] == inf) {
continue;
}
Set<Integer> s = new HashSet<>();
int mask = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 0 && !s.contains(nums[j])) {
s.add(nums[j]);
mask |= 1 << j;
}
}
if (s.size() < m) {
continue;
}
for (int j = mask; j > 0; j = (j - 1) & mask) {
if (g[j] != -1) {
f[i | j] = Math.min(f[i | j], f[i] + g[j]);
}
}
}
return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | class Solution {
public:
int minimumIncompatibility(vector<int>& nums, int k) {
int n = nums.size();
int m = n / k;
int g[1 << n];
memset(g, -1, sizeof(g));
for (int i = 1; i < 1 << n; ++i) {
if (__builtin_popcount(i) != m) {
continue;
}
unordered_set<int> s;
int mi = 20, mx = 0;
for (int j = 0; j < n; ++j) {
if (i >> j & 1) {
if (s.count(nums[j])) {
break;
}
s.insert(nums[j]);
mi = min(mi, nums[j]);
mx = max(mx, nums[j]);
}
}
if (s.size() == m) {
g[i] = mx - mi;
}
}
int f[1 << n];
memset(f, 0x3f, sizeof(f));
f[0] = 0;
for (int i = 0; i < 1 << n; ++i) {
if (f[i] == 0x3f3f3f3f) {
continue;
}
unordered_set<int> s;
int mask = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 0 && !s.count(nums[j])) {
s.insert(nums[j]);
mask |= 1 << j;
}
}
if (s.size() < m) {
continue;
}
for (int j = mask; j; j = (j - 1) & mask) {
if (g[j] != -1) {
f[i | j] = min(f[i | j], f[i] + g[j]);
}
}
}
return f[(1 << n) - 1] == 0x3f3f3f3f ? -1 : f[(1 << n) - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | func minimumIncompatibility(nums []int, k int) int {
n := len(nums)
m := n / k
const inf = 1 << 30
f := make([]int, 1<<n)
g := make([]int, 1<<n)
for i := range g {
f[i] = inf
g[i] = -1
}
for i := 1; i < 1<<n; i++ {
if bits.OnesCount(uint(i)) != m {
continue
}
s := map[int]struct{}{}
mi, mx := 20, 0
for j, x := range nums {
if i>>j&1 == 1 {
if _, ok := s[x]; ok {
break
}
s[x] = struct{}{}
mi = min(mi, x)
mx = max(mx, x)
}
}
if len(s) == m {
g[i] = mx - mi
}
}
f[0] = 0
for i := 0; i < 1<<n; i++ {
if f[i] == inf {
continue
}
s := map[int]struct{}{}
mask := 0
for j, x := range nums {
if _, ok := s[x]; !ok && i>>j&1 == 0 {
s[x] = struct{}{}
mask |= 1 << j
}
}
if len(s) < m {
continue
}
for j := mask; j > 0; j = (j - 1) & mask {
if g[j] != -1 {
f[i|j] = min(f[i|j], f[i]+g[j])
}
}
}
if f[1<<n-1] == inf {
return -1
}
return f[1<<n-1]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | function minimumIncompatibility(nums: number[], k: number): number {
const n = nums.length;
const m = Math.floor(n / k);
const g: number[] = Array(1 << n).fill(-1);
for (let i = 1; i < 1 << n; ++i) {
if (bitCount(i) !== m) {
continue;
}
const s: Set<number> = new Set();
let [mi, mx] = [20, 0];
for (let j = 0; j < n; ++j) {
if ((i >> j) & 1) {
if (s.has(nums[j])) {
break;
}
s.add(nums[j]);
mi = Math.min(mi, nums[j]);
mx = Math.max(mx, nums[j]);
}
}
if (s.size === m) {
g[i] = mx - mi;
}
}
const inf = 1e9;
const f: number[] = Array(1 << n).fill(inf);
f[0] = 0;
for (let i = 0; i < 1 << n; ++i) {
if (f[i] === inf) {
continue;
}
const s: Set<number> = new Set();
let mask = 0;
for (let j = 0; j < n; ++j) {
if (((i >> j) & 1) === 0 && !s.has(nums[j])) {
s.add(nums[j]);
mask |= 1 << j;
}
}
if (s.size < m) {
continue;
}
for (let j = mask; j; j = (j - 1) & mask) {
if (g[j] !== -1) {
f[i | j] = Math.min(f[i | j], f[i] + g[j]);
}
}
}
return f[(1 << n) - 1] === inf ? -1 : f[(1 << n) - 1];
}
function bitCount(i: number): number {
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 | public class Solution {
public int MinimumIncompatibility(int[] nums, int k) {
int n = nums.Length;
int m = n / k;
int[] g = new int[1 << n];
Array.Fill(g, -1);
for (int i = 1; i < 1 << n; ++i) {
if (bitCount(i) != m) {
continue;
}
HashSet<int> s = new();
int mi = 20, mx = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 1) {
if (s.Contains(nums[j])) {
break;
}
s.Add(nums[j]);
mi = Math.Min(mi, nums[j]);
mx = Math.Max(mx, nums[j]);
}
}
if (s.Count == m) {
g[i] = mx - mi;
}
}
int[] f = new int[1 << n];
int inf = 1 << 30;
Array.Fill(f, inf);
f[0] = 0;
for (int i = 0; i < 1 << n; ++i) {
if (f[i] == inf) {
continue;
}
HashSet<int> s = new();
int mask = 0;
for (int j = 0; j < n; ++j) {
if ((i >> j & 1) == 0 && !s.Contains(nums[j])) {
s.Add(nums[j]);
mask |= 1 << j;
}
}
if (s.Count < m) {
continue;
}
for (int j = mask; j > 0; j = (j - 1) & mask) {
if (g[j] != -1) {
f[i | j] = Math.Min(f[i | j], f[i] + g[j]);
}
}
}
return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1];
}
private int bitCount(int x) {
int cnt = 0;
while (x > 0) {
x &= x - 1;
++cnt;
}
return cnt;
}
}
|
方法二