题目描述
给你四个整数 m
、n
、introvertsCount
和 extrovertsCount
。有一个 m x n
网格,和两种类型的人:内向的人和外向的人。总共有 introvertsCount
个内向的人和 extrovertsCount
个外向的人。
请你决定网格中应当居住多少人,并为每个人分配一个网格单元。 注意,不必 让所有人都生活在网格中。
每个人的 幸福感 计算如下:
- 内向的人 开始 时有
120
个幸福感,但每存在一个邻居(内向的或外向的)他都会 失去 30
个幸福感。
- 外向的人 开始 时有
40
个幸福感,每存在一个邻居(内向的或外向的)他都会 得到 20
个幸福感。
邻居是指居住在一个人所在单元的上、下、左、右四个直接相邻的单元中的其他人。
网格幸福感 是每个人幸福感的 总和 。 返回 最大可能的网格幸福感 。
示例 1:
输入:m = 2, n = 3, introvertsCount = 1, extrovertsCount = 2
输出:240
解释:假设网格坐标 (row, column) 从 1 开始编号。
将内向的人放置在单元 (1,1) ,将外向的人放置在单元 (1,3) 和 (2,3) 。
- 位于 (1,1) 的内向的人的幸福感:120(初始幸福感)- (0 * 30)(0 位邻居)= 120
- 位于 (1,3) 的外向的人的幸福感:40(初始幸福感)+ (1 * 20)(1 位邻居)= 60
- 位于 (2,3) 的外向的人的幸福感:40(初始幸福感)+ (1 * 20)(1 位邻居)= 60
网格幸福感为:120 + 60 + 60 = 240
上图展示该示例对应网格中每个人的幸福感。内向的人在浅绿色单元中,而外向的人在浅紫色单元中。
示例 2:
输入:m = 3, n = 1, introvertsCount = 2, extrovertsCount = 1
输出:260
解释:将内向的人放置在单元 (1,1) 和 (3,1) ,将外向的人放置在单元 (2,1) 。
- 位于 (1,1) 的内向的人的幸福感:120(初始幸福感)- (1 * 30)(1 位邻居)= 90
- 位于 (2,1) 的外向的人的幸福感:40(初始幸福感)+ (2 * 20)(2 位邻居)= 80
- 位于 (3,1) 的内向的人的幸福感:120(初始幸福感)- (1 * 30)(1 位邻居)= 90
网格幸福感为 90 + 80 + 90 = 260
示例 3:
输入:m = 2, n = 2, introvertsCount = 4, extrovertsCount = 0
输出:240
提示:
1 <= m, n <= 5
0 <= introvertsCount, extrovertsCount <= min(m * n, 6)
解法
方法一:三进制状态压缩 + 记忆化搜索
我们注意到,题目中 $1 \leq m, n \leq 5$,并且每个网格单元只有三种状态,即:不分配人员、分配内向的人、分配外向的人。因此,我们可以用 $0$, $1$, $2$ 表示这三种状态,网格中的每一行可以用一个长度为 $n$ 的三进制数表示。
我们定义一个函数 $dfs(i, pre, ic, ec)$,表示当前从第 $i$ 行开始,且上一行的状态为 $pre$,内向的人还剩 $ic$ 个,外向的人还剩 $ec$ 个时,网格的最大幸福感。那么答案就是 $dfs(0, 0, introvertsCount, extrovertsCount)$。
函数 $dfs(i, pre, ic, ec)$ 的计算过程如下:
如果 $i = m$,表示已经处理完了所有的行,那么返回 $0$;
如果 $ic = 0$ 且 $ec = 0$,表示所有的人都已经分配完了,那么返回 $0$;
否则,枚举当前行的状态 $cur$,其中 $cur \in [0, 3^n)$,然后计算当前行的幸福感 $f[cur]$,以及与上一行的状态 $pre$ 之间对幸福感的贡献 $g[pre][cur]$,并递归计算 $dfs(i + 1, cur, ic - ix[cur], ec - ex[cur])$,最后返回 $f[cur] + g[pre][cur] + dfs(i + 1, cur, ic - ix[cur], ec - ex[cur])$ 的最大值,即:
$$
dfs(i, pre, ic, ec) = \max_{cur} {f[cur] + g[pre][cur] + dfs(i + 1, cur, ic - ix[cur], ec - ex[cur])}
$$
其中:
- $ix[cur]$ 表示状态 $cur$ 中内向的人的个数;
- $ex[cur]$ 表示状态 $cur$ 中外向的人的个数;
- $f[cur]$ 表示状态 $cur$ 中的人的初始幸福感;
- $g[pre][cur]$ 表示两个相邻状态行对幸福感的贡献。
这些值都可以通过预处理得到。并且,我们可以使用记忆化搜索的方法,避免重复计算。
时间复杂度 $O(3^{2n} \times (m \times ic \times ec + n))$,空间复杂度 $O(3^{2n} + 3^n \times m \times ic \times ec)$。其中 $ic$ 和 $ec$ 分别表示内向的人和外向的人的个数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | class Solution:
def getMaxGridHappiness(
self, m: int, n: int, introvertsCount: int, extrovertsCount: int
) -> int:
@cache
def dfs(i: int, pre: int, ic: int, ec: int) -> int:
if i == m or (ic == 0 and ec == 0):
return 0
ans = 0
for cur in range(mx):
if ix[cur] <= ic and ex[cur] <= ec:
a = f[cur] + g[pre][cur]
b = dfs(i + 1, cur, ic - ix[cur], ec - ex[cur])
ans = max(ans, a + b)
return ans
mx = pow(3, n)
f = [0] * mx
g = [[0] * mx for _ in range(mx)]
h = [[0, 0, 0], [0, -60, -10], [0, -10, 40]]
bits = [[0] * n for _ in range(mx)]
ix = [0] * mx
ex = [0] * mx
for i in range(mx):
mask = i
for j in range(n):
mask, x = divmod(mask, 3)
bits[i][j] = x
if x == 1:
ix[i] += 1
f[i] += 120
elif x == 2:
ex[i] += 1
f[i] += 40
if j:
f[i] += h[x][bits[i][j - 1]]
for i in range(mx):
for j in range(mx):
for k in range(n):
g[i][j] += h[bits[i][k]][bits[j][k]]
return dfs(0, 0, introvertsCount, extrovertsCount)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 | class Solution {
private int m;
private int mx;
private int[] f;
private int[][] g;
private int[][] bits;
private int[] ix;
private int[] ex;
private Integer[][][][] memo;
private final int[][] h = {{0, 0, 0}, {0, -60, -10}, {0, -10, 40}};
public int getMaxGridHappiness(int m, int n, int introvertsCount, int extrovertsCount) {
this.m = m;
mx = (int) Math.pow(3, n);
f = new int[mx];
g = new int[mx][mx];
bits = new int[mx][n];
ix = new int[mx];
ex = new int[mx];
memo = new Integer[m][mx][introvertsCount + 1][extrovertsCount + 1];
for (int i = 0; i < mx; ++i) {
int mask = i;
for (int j = 0; j < n; ++j) {
int x = mask % 3;
mask /= 3;
bits[i][j] = x;
if (x == 1) {
ix[i]++;
f[i] += 120;
} else if (x == 2) {
ex[i]++;
f[i] += 40;
}
if (j > 0) {
f[i] += h[x][bits[i][j - 1]];
}
}
}
for (int i = 0; i < mx; ++i) {
for (int j = 0; j < mx; ++j) {
for (int k = 0; k < n; ++k) {
g[i][j] += h[bits[i][k]][bits[j][k]];
}
}
}
return dfs(0, 0, introvertsCount, extrovertsCount);
}
private int dfs(int i, int pre, int ic, int ec) {
if (i == m || (ic == 0 && ec == 0)) {
return 0;
}
if (memo[i][pre][ic][ec] != null) {
return memo[i][pre][ic][ec];
}
int ans = 0;
for (int cur = 0; cur < mx; ++cur) {
if (ix[cur] <= ic && ex[cur] <= ec) {
ans = Math.max(
ans, f[cur] + g[pre][cur] + dfs(i + 1, cur, ic - ix[cur], ec - ex[cur]));
}
}
return memo[i][pre][ic][ec] = ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 | class Solution {
public:
int getMaxGridHappiness(int m, int n, int introvertsCount, int extrovertsCount) {
int mx = pow(3, n);
int f[mx];
int g[mx][mx];
int bits[mx][n];
int ix[mx];
int ex[mx];
int memo[m][mx][introvertsCount + 1][extrovertsCount + 1];
int h[3][3] = {{0, 0, 0}, {0, -60, -10}, {0, -10, 40}};
memset(f, 0, sizeof(f));
memset(g, 0, sizeof(g));
memset(bits, 0, sizeof(bits));
memset(ix, 0, sizeof(ix));
memset(ex, 0, sizeof(ex));
memset(memo, -1, sizeof(memo));
for (int i = 0; i < mx; ++i) {
int mask = i;
for (int j = 0; j < n; ++j) {
int x = mask % 3;
mask /= 3;
bits[i][j] = x;
if (x == 1) {
ix[i]++;
f[i] += 120;
} else if (x == 2) {
ex[i]++;
f[i] += 40;
}
if (j) {
f[i] += h[x][bits[i][j - 1]];
}
}
}
for (int i = 0; i < mx; ++i) {
for (int j = 0; j < mx; ++j) {
for (int k = 0; k < n; ++k) {
g[i][j] += h[bits[i][k]][bits[j][k]];
}
}
}
function<int(int, int, int, int)> dfs = [&](int i, int pre, int ic, int ec) {
if (i == m || (ic == 0 && ec == 0)) {
return 0;
}
if (memo[i][pre][ic][ec] != -1) {
return memo[i][pre][ic][ec];
}
int ans = 0;
for (int cur = 0; cur < mx; ++cur) {
if (ix[cur] <= ic && ex[cur] <= ec) {
ans = max(ans, f[cur] + g[pre][cur] + dfs(i + 1, cur, ic - ix[cur], ec - ex[cur]));
}
}
return memo[i][pre][ic][ec] = ans;
};
return dfs(0, 0, introvertsCount, extrovertsCount);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69 | func getMaxGridHappiness(m int, n int, introvertsCount int, extrovertsCount int) int {
mx := int(math.Pow(3, float64(n)))
f := make([]int, mx)
g := make([][]int, mx)
h := [3][3]int{{0, 0, 0}, {0, -60, -10}, {0, -10, 40}}
bits := make([][]int, mx)
ix := make([]int, mx)
ex := make([]int, mx)
memo := make([][][][]int, m)
for i := range g {
g[i] = make([]int, mx)
bits[i] = make([]int, n)
}
for i := range memo {
memo[i] = make([][][]int, mx)
for j := range memo[i] {
memo[i][j] = make([][]int, introvertsCount+1)
for k := range memo[i][j] {
memo[i][j][k] = make([]int, extrovertsCount+1)
for l := range memo[i][j][k] {
memo[i][j][k][l] = -1
}
}
}
}
for i := 0; i < mx; i++ {
mask := i
for j := 0; j < n; j++ {
x := mask % 3
mask /= 3
bits[i][j] = x
if x == 1 {
ix[i]++
f[i] += 120
} else if x == 2 {
ex[i]++
f[i] += 40
}
if j > 0 {
f[i] += h[x][bits[i][j-1]]
}
}
}
for i := 0; i < mx; i++ {
for j := 0; j < mx; j++ {
for k := 0; k < n; k++ {
g[i][j] += h[bits[i][k]][bits[j][k]]
}
}
}
var dfs func(int, int, int, int) int
dfs = func(i, pre, ic, ec int) int {
if i == m || (ic == 0 && ec == 0) {
return 0
}
if memo[i][pre][ic][ec] != -1 {
return memo[i][pre][ic][ec]
}
ans := 0
for cur := 0; cur < mx; cur++ {
if ix[cur] <= ic && ex[cur] <= ec {
ans = max(ans, f[cur]+g[pre][cur]+dfs(i+1, cur, ic-ix[cur], ec-ex[cur]))
}
}
memo[i][pre][ic][ec] = ans
return ans
}
return dfs(0, 0, introvertsCount, extrovertsCount)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76 | function getMaxGridHappiness(
m: number,
n: number,
introvertsCount: number,
extrovertsCount: number,
): number {
const mx = 3 ** n;
const f: number[] = Array(mx).fill(0);
const g: number[][] = Array(mx)
.fill(0)
.map(() => Array(mx).fill(0));
const h: number[][] = [
[0, 0, 0],
[0, -60, -10],
[0, -10, 40],
];
const bits: number[][] = Array(mx)
.fill(0)
.map(() => Array(n).fill(0));
const ix: number[] = Array(mx).fill(0);
const ex: number[] = Array(mx).fill(0);
const memo: number[][][][] = Array(m)
.fill(0)
.map(() =>
Array(mx)
.fill(0)
.map(() =>
Array(introvertsCount + 1)
.fill(0)
.map(() => Array(extrovertsCount + 1).fill(-1)),
),
);
for (let i = 0; i < mx; ++i) {
let mask = i;
for (let j = 0; j < n; ++j) {
const x = mask % 3;
mask = Math.floor(mask / 3);
bits[i][j] = x;
if (x === 1) {
ix[i] += 1;
f[i] += 120;
} else if (x === 2) {
ex[i] += 1;
f[i] += 40;
}
if (j > 0) {
f[i] += h[x][bits[i][j - 1]];
}
}
}
for (let i = 0; i < mx; ++i) {
for (let j = 0; j < mx; ++j) {
for (let k = 0; k < n; ++k) {
g[i][j] += h[bits[i][k]][bits[j][k]];
}
}
}
const dfs = (i: number, pre: number, ic: number, ec: number): number => {
if (i === m || (ic === 0 && ec === 0)) {
return 0;
}
if (memo[i][pre][ic][ec] !== -1) {
return memo[i][pre][ic][ec];
}
let ans = 0;
for (let cur = 0; cur < mx; ++cur) {
if (ix[cur] <= ic && ex[cur] <= ec) {
const a = f[cur] + g[pre][cur];
const b = dfs(i + 1, cur, ic - ix[cur], ec - ex[cur]);
ans = Math.max(ans, a + b);
}
}
return (memo[i][pre][ic][ec] = ans);
};
return dfs(0, 0, introvertsCount, extrovertsCount);
}
|
方法二:轮廓线记忆化搜索
我们可以考虑搜索每个网格单元,每次搜索一个位置 $(i, j)$,我们记 $pos = i \times n + j$。那么它左边以及上边的相邻网格会影响到它们之间的幸福感贡献。
我们定义一个函数 $dfs(pos, pre, ic, ec)$,表示当前搜索到位置 $pos$,且此前的 $n$ 个网格单元的状态为 $pre$,内向的人还剩 $ic$ 个,外向的人还剩 $ec$ 个时,网格的最大幸福感。那么答案就是 $dfs(0, 0, introvertsCount, extrovertsCount)$。
函数 $dfs(pos, pre, ic, ec)$ 的计算过程如下:
如果 $pos = m \times n$,表示已经处理完了所有的网格单元,那么返回 $0$;
如果 $ic = 0$ 且 $ec = 0$,表示所有的人都已经分配完了,那么返回 $0$;
否则,我们根据 $pre$ 算出当前网格单元的上边相邻网格单元的状态 $up = \frac{pre}{3^{n-1}}$,以及左边相邻网格单元的状态 $left = pre \bmod 3$(注意,如果 $pos$ 在第 $0$ 列,那么 $left = 0$)。
接下来,我们枚举当前网格单元的状态 $i$,其中 $i \in [0, 3)$。那么当前的 $n$ 个网格单元的状态为 $cur = pre \bmod 3^{n-1} \times 3 + i$,当前网格单元以及左边和上边的相邻网格单元的幸福感贡献为 $h[up][i]+h[left][i]$;而当前网格单元本身的幸福感取决于该位置是否分配人员,以及分配的人员是内向的还是外向的,如果是内向的,那么幸福感为 $120$,如果是外向的,那么幸福感为 $40$,否则幸福感为 $0$;然后,如果当前网格单元分配了人员,那么我们递归调用时需要更新 $ic$ 或 $ec$。累计这些幸福感,取最大值作为函数的返回值。
与方法一类似,我们也可以使用记忆化搜索的方法,避免重复计算。
时间复杂度 $O(3^{n+1} \times m \times n \times ic \times ec)$,空间复杂度 $O(3^n \times m \times n \times ic \times ec)$。其中 $ic$ 和 $ec$ 分别表示内向的人和外向的人的个数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution:
def getMaxGridHappiness(
self, m: int, n: int, introvertsCount: int, extrovertsCount: int
) -> int:
@cache
def dfs(pos: int, pre: int, ic: int, ec: int) -> int:
if pos == m * n or (ic == 0 and ec == 0):
return 0
ans = 0
up = pre // p
left = 0 if pos % n == 0 else pre % 3
for i in range(3):
if (i == 1 and ic == 0) or (i == 2 and ec == 0):
continue
cur = pre % p * 3 + i
a = h[up][i] + h[left][i]
b = dfs(pos + 1, cur, ic - (i == 1), ec - (i == 2))
c = 0
if i == 1:
c = 120
elif i == 2:
c = 40
ans = max(ans, a + b + c)
return ans
p = pow(3, n - 1)
h = [[0, 0, 0], [0, -60, -10], [0, -10, 40]]
return dfs(0, 0, introvertsCount, extrovertsCount)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | class Solution {
private int m;
private int n;
private int p;
private final int[][] h = {{0, 0, 0}, {0, -60, -10}, {0, -10, 40}};
private Integer[][][][] memo;
public int getMaxGridHappiness(int m, int n, int introvertsCount, int extrovertsCount) {
this.m = m;
this.n = n;
p = (int) Math.pow(3, n - 1);
memo = new Integer[m * n][p * 3][introvertsCount + 1][extrovertsCount + 1];
return dfs(0, 0, introvertsCount, extrovertsCount);
}
private int dfs(int pos, int pre, int ic, int ec) {
if (pos == m * n || (ic == 0 && ec == 0)) {
return 0;
}
if (memo[pos][pre][ic][ec] != null) {
return memo[pos][pre][ic][ec];
}
int ans = 0;
int up = pre / p;
int left = pos % n == 0 ? 0 : pre % 3;
for (int i = 0; i < 3; ++i) {
if (i == 1 && (ic == 0) || (i == 2 && ec == 0)) {
continue;
}
int cur = pre % p * 3 + i;
int a = h[up][i] + h[left][i];
int b = dfs(pos + 1, cur, ic - (i == 1 ? 1 : 0), ec - (i == 2 ? 1 : 0));
int c = i == 1 ? 120 : (i == 2 ? 40 : 0);
ans = Math.max(ans, a + b + c);
}
return memo[pos][pre][ic][ec] = ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
public:
int getMaxGridHappiness(int m, int n, int introvertsCount, int extrovertsCount) {
int h[3][3] = {{0, 0, 0}, {0, -60, -10}, {0, -10, 40}};
int p = pow(3, n - 1);
int memo[m * n][p * 3][introvertsCount + 1][extrovertsCount + 1];
memset(memo, -1, sizeof(memo));
function<int(int, int, int, int)> dfs = [&](int pos, int pre, int ic, int ec) {
if (pos == m * n || (ic == 0 && ec == 0)) {
return 0;
}
if (memo[pos][pre][ic][ec] != -1) {
return memo[pos][pre][ic][ec];
}
int ans = 0;
int up = pre / p;
int left = pos % n == 0 ? 0 : pre % 3;
for (int i = 0; i < 3; ++i) {
if ((i == 1 && ic == 0) || (i == 2 && ec == 0)) {
continue;
}
int cur = pre % p * 3 + i;
int a = h[up][i] + h[left][i];
int b = dfs(pos + 1, cur, ic - (i == 1), ec - (i == 2));
int c = i == 1 ? 120 : (i == 2 ? 40 : 0);
ans = max(ans, a + b + c);
}
return memo[pos][pre][ic][ec] = ans;
};
return dfs(0, 0, introvertsCount, extrovertsCount);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 | func getMaxGridHappiness(m int, n int, introvertsCount int, extrovertsCount int) int {
p := int(math.Pow(3, float64(n-1)))
h := [3][3]int{{0, 0, 0}, {0, -60, -10}, {0, -10, 40}}
memo := make([][][][]int, m*n)
for i := range memo {
memo[i] = make([][][]int, p*3)
for j := range memo[i] {
memo[i][j] = make([][]int, introvertsCount+1)
for k := range memo[i][j] {
memo[i][j][k] = make([]int, extrovertsCount+1)
for l := range memo[i][j][k] {
memo[i][j][k][l] = -1
}
}
}
}
var dfs func(int, int, int, int) int
dfs = func(pos, pre, ic, ec int) int {
if pos == m*n || (ic == 0 && ec == 0) {
return 0
}
if memo[pos][pre][ic][ec] != -1 {
return memo[pos][pre][ic][ec]
}
ans := 0
up := pre / p
left := pre % 3
if pos%n == 0 {
left = 0
}
for i := 0; i < 3; i++ {
if (i == 1 && ic == 0) || (i == 2 && ec == 0) {
continue
}
cur := pre%p*3 + i
nic, nec := ic, ec
c := 0
if i == 1 {
nic--
c = 120
} else if i == 2 {
nec--
c = 40
}
a := h[up][i] + h[left][i]
b := dfs(pos+1, cur, nic, nec)
ans = max(ans, a+b+c)
}
memo[pos][pre][ic][ec] = ans
return ans
}
return dfs(0, 0, introvertsCount, extrovertsCount)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 | function getMaxGridHappiness(
m: number,
n: number,
introvertsCount: number,
extrovertsCount: number,
): number {
const p = 3 ** (n - 1);
const h: number[][] = [
[0, 0, 0],
[0, -60, -10],
[0, -10, 40],
];
const memo: number[][][][] = Array(m * n)
.fill(0)
.map(() =>
Array(p * 3)
.fill(0)
.map(() =>
Array(introvertsCount + 1)
.fill(0)
.map(() => Array(extrovertsCount + 1).fill(-1)),
),
);
const dfs = (pos: number, pre: number, ic: number, ec: number): number => {
if (pos === m * n || (ic === 0 && ec === 0)) {
return 0;
}
if (memo[pos][pre][ic][ec] !== -1) {
return memo[pos][pre][ic][ec];
}
let ans = 0;
const up = Math.floor(pre / p);
const left = pos % n == 0 ? 0 : pre % 3;
for (let i = 0; i < 3; ++i) {
if ((i === 1 && ic === 0) || (i === 2 && ec === 0)) {
continue;
}
const cur = (pre % p) * 3 + i;
const a = h[up][i] + h[left][i];
const nic = i === 1 ? ic - 1 : ic;
const nec = i === 2 ? ec - 1 : ec;
const b = dfs(pos + 1, cur, nic, nec);
const c = i === 1 ? 120 : i === 2 ? 40 : 0;
ans = Math.max(ans, a + b + c);
}
return (memo[pos][pre][ic][ec] = ans);
};
return dfs(0, 0, introvertsCount, extrovertsCount);
}
|