树
广度优先搜索
二叉树
题目描述
如果一棵二叉树满足下述几个条件,则可以称为 奇偶树 :
二叉树根节点所在层下标为 0
,根的子节点所在层下标为 1
,根的孙节点所在层下标为 2
,依此类推。
偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增
奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减
给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true
,否则返回 false
。
示例 1:
输入: root = [1,10,4,3,null,7,9,12,8,6,null,null,2]
输出: true
解释: 每一层的节点值分别是:
0 层:[1]
1 层:[10,4]
2 层:[3,7,9]
3 层:[12,8,6,2]
由于 0 层和 2 层上的节点值都是奇数且严格递增,而 1 层和 3 层上的节点值都是偶数且严格递减,因此这是一棵奇偶树。
示例 2:
输入: root = [5,4,2,3,3,7]
输出: false
解释: 每一层的节点值分别是:
0 层:[5]
1 层:[4,2]
2 层:[3,3,7]
2 层上的节点值不满足严格递增的条件,所以这不是一棵奇偶树。
示例 3:
输入: root = [5,9,1,3,5,7]
输出: false
解释: 1 层上的节点值应为偶数。
示例 4:
输入: root = [1]
输出: true
示例 5:
输入: root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17]
输出: true
提示:
树中节点数在范围 [1, 105 ]
内
1 <= Node.val <= 106
解法
方法一:BFS
BFS 逐层遍历,每层按照奇偶性判断,每层的节点值都是偶数或奇数,且严格递增或递减。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def isEvenOddTree ( self , root : Optional [ TreeNode ]) -> bool :
even = 1
q = deque ([ root ])
while q :
prev = 0 if even else inf
for _ in range ( len ( q )):
root = q . popleft ()
if even and ( root . val % 2 == 0 or prev >= root . val ):
return False
if not even and ( root . val % 2 == 1 or prev <= root . val ):
return False
prev = root . val
if root . left :
q . append ( root . left )
if root . right :
q . append ( root . right )
even ^= 1
return True
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isEvenOddTree ( TreeNode root ) {
boolean even = true ;
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
while ( ! q . isEmpty ()) {
int prev = even ? 0 : 1000001 ;
for ( int n = q . size (); n > 0 ; -- n ) {
root = q . pollFirst ();
if ( even && ( root . val % 2 == 0 || prev >= root . val )) {
return false ;
}
if ( ! even && ( root . val % 2 == 1 || prev <= root . val )) {
return false ;
}
prev = root . val ;
if ( root . left != null ) {
q . offer ( root . left );
}
if ( root . right != null ) {
q . offer ( root . right );
}
}
even = ! even ;
}
return true ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool isEvenOddTree ( TreeNode * root ) {
int even = 1 ;
queue < TreeNode *> q {{ root }};
while ( ! q . empty ()) {
int prev = even ? 0 : 1e7 ;
for ( int n = q . size (); n ; -- n ) {
root = q . front ();
q . pop ();
if ( even && ( root -> val % 2 == 0 || prev >= root -> val )) {
return false ;
}
if ( ! even && ( root -> val % 2 == 1 || prev <= root -> val )) {
return false ;
}
prev = root -> val ;
if ( root -> left ) {
q . push ( root -> left );
}
if ( root -> right ) {
q . push ( root -> right );
}
}
even ^= 1 ;
}
return true ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isEvenOddTree ( root * TreeNode ) bool {
even := true
q := [] * TreeNode { root }
for len ( q ) > 0 {
var prev int = 1e7
if even {
prev = 0
}
for n := len ( q ); n > 0 ; n -- {
root = q [ 0 ]
q = q [ 1 :]
if even && ( root . Val % 2 == 0 || prev >= root . Val ) {
return false
}
if ! even && ( root . Val % 2 == 1 || prev <= root . Val ) {
return false
}
prev = root . Val
if root . Left != nil {
q = append ( q , root . Left )
}
if root . Right != nil {
q = append ( q , root . Right )
}
}
even = ! even
}
return true
}
方法二:DFS
DFS 先序遍历二叉树,同样根据节点所在层的奇偶性判断是否满足条件,遍历过程中用哈希表记录每一层最近访问到的节点值。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def isEvenOddTree ( self , root : Optional [ TreeNode ]) -> bool :
def dfs ( root , i ):
if root is None :
return True
even = i % 2 == 0
prev = d . get ( i , 0 if even else inf )
if even and ( root . val % 2 == 0 or prev >= root . val ):
return False
if not even and ( root . val % 2 == 1 or prev <= root . val ):
return False
d [ i ] = root . val
return dfs ( root . left , i + 1 ) and dfs ( root . right , i + 1 )
d = {}
return dfs ( root , 0 )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map < Integer , Integer > d = new HashMap <> ();
public boolean isEvenOddTree ( TreeNode root ) {
return dfs ( root , 0 );
}
private boolean dfs ( TreeNode root , int i ) {
if ( root == null ) {
return true ;
}
boolean even = i % 2 == 0 ;
int prev = d . getOrDefault ( i , even ? 0 : 1000001 );
if ( even && ( root . val % 2 == 0 || prev >= root . val )) {
return false ;
}
if ( ! even && ( root . val % 2 == 1 || prev <= root . val )) {
return false ;
}
d . put ( i , root . val );
return dfs ( root . left , i + 1 ) && dfs ( root . right , i + 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
unordered_map < int , int > d ;
bool isEvenOddTree ( TreeNode * root ) {
return dfs ( root , 0 );
}
bool dfs ( TreeNode * root , int i ) {
if ( ! root ) {
return true ;
}
int even = i % 2 == 0 ;
int prev = d . count ( i ) ? d [ i ] : ( even ? 0 : 1e7 );
if ( even && ( root -> val % 2 == 0 || prev >= root -> val )) {
return false ;
}
if ( ! even && ( root -> val % 2 == 1 || prev <= root -> val )) {
return false ;
}
d [ i ] = root -> val ;
return dfs ( root -> left , i + 1 ) && dfs ( root -> right , i + 1 );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isEvenOddTree ( root * TreeNode ) bool {
d := map [ int ] int {}
var dfs func ( * TreeNode , int ) bool
dfs = func ( root * TreeNode , i int ) bool {
if root == nil {
return true
}
even := i % 2 == 0
prev , ok := d [ i ]
if ! ok {
if even {
prev = 0
} else {
prev = 10000000
}
}
if even && ( root . Val % 2 == 0 || prev >= root . Val ) {
return false
}
if ! even && ( root . Val % 2 == 1 || prev <= root . Val ) {
return false
}
d [ i ] = root . Val
return dfs ( root . Left , i + 1 ) && dfs ( root . Right , i + 1 )
}
return dfs ( root , 0 )
}
GitHub