题目描述
给你两个非负整数数组 rowSum
和 colSum
,其中 rowSum[i]
是二维矩阵中第 i
行元素的和, colSum[j]
是第 j
列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。
请找到大小为 rowSum.length x colSum.length
的任意 非负整数 矩阵,且该矩阵满足 rowSum
和 colSum
的要求。
请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。
示例 1:
输入:rowSum = [3,8], colSum = [4,7]
输出:[[3,0],
[1,7]]
解释:
第 0 行:3 + 0 = 3 == rowSum[0]
第 1 行:1 + 7 = 8 == rowSum[1]
第 0 列:3 + 1 = 4 == colSum[0]
第 1 列:0 + 7 = 7 == colSum[1]
行和列的和都满足题目要求,且所有矩阵元素都是非负的。
另一个可行的矩阵为:[[1,2],
[3,5]]
示例 2:
输入:rowSum = [5,7,10], colSum = [8,6,8]
输出:[[0,5,0],
[6,1,0],
[2,0,8]]
示例 3:
输入:rowSum = [14,9], colSum = [6,9,8]
输出:[[0,9,5],
[6,0,3]]
示例 4:
输入:rowSum = [1,0], colSum = [1]
输出:[[1],
[0]]
示例 5:
输入:rowSum = [0], colSum = [0]
输出:[[0]]
提示:
1 <= rowSum.length, colSum.length <= 500
0 <= rowSum[i], colSum[i] <= 108
sum(rowSum) == sum(colSum)
解法
方法一:贪心 + 构造
我们可以先初始化一个 $m$ 行 $n$ 列的答案矩阵 $ans$。
接下来,遍历矩阵的每一个位置 $(i, j)$,将该位置的元素设为 $x = min(rowSum[i], colSum[j])$,并将 $rowSum[i]$ 和 $colSum[j]$ 分别减去 $x$。遍历完所有的位置后,我们就可以得到一个满足题目要求的矩阵 $ans$。
以上策略的正确性说明如下:
根据题目的要求,我们知道 $rowSum$ 和 $colSum$ 的和是相等的,那么 $rowSum[0]$ 一定小于等于 $\sum_{j = 0}^{n - 1} colSum[j]$。所以,在经过 $n$ 次操作后,一定能够使得 $rowSum[0]$ 为 $0$,并且保证对任意 $j \in [0, n - 1]$,都有 $colSum[j] \geq 0$。
因此,我们把原问题缩小为一个 $m-1$ 行和 $n$ 列的子问题,继续进行上述的操作,直到 $rowSum$ 和 $colSum$ 中的所有元素都为 $0$,就可以得到一个满足题目要求的矩阵 $ans$。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为 $rowSum$ 和 $colSum$ 的长度。
| class Solution:
def restoreMatrix(self, rowSum: List[int], colSum: List[int]) -> List[List[int]]:
m, n = len(rowSum), len(colSum)
ans = [[0] * n for _ in range(m)]
for i in range(m):
for j in range(n):
x = min(rowSum[i], colSum[j])
ans[i][j] = x
rowSum[i] -= x
colSum[j] -= x
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public int[][] restoreMatrix(int[] rowSum, int[] colSum) {
int m = rowSum.length;
int n = colSum.length;
int[][] ans = new int[m][n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int x = Math.min(rowSum[i], colSum[j]);
ans[i][j] = x;
rowSum[i] -= x;
colSum[j] -= x;
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public:
vector<vector<int>> restoreMatrix(vector<int>& rowSum, vector<int>& colSum) {
int m = rowSum.size(), n = colSum.size();
vector<vector<int>> ans(m, vector<int>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
int x = min(rowSum[i], colSum[j]);
ans[i][j] = x;
rowSum[i] -= x;
colSum[j] -= x;
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | func restoreMatrix(rowSum []int, colSum []int) [][]int {
m, n := len(rowSum), len(colSum)
ans := make([][]int, m)
for i := range ans {
ans[i] = make([]int, n)
}
for i := range rowSum {
for j := range colSum {
x := min(rowSum[i], colSum[j])
ans[i][j] = x
rowSum[i] -= x
colSum[j] -= x
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | function restoreMatrix(rowSum: number[], colSum: number[]): number[][] {
const m = rowSum.length;
const n = colSum.length;
const ans = Array.from(new Array(m), () => new Array(n).fill(0));
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
const x = Math.min(rowSum[i], colSum[j]);
ans[i][j] = x;
rowSum[i] -= x;
colSum[j] -= x;
}
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | /**
* @param {number[]} rowSum
* @param {number[]} colSum
* @return {number[][]}
*/
var restoreMatrix = function (rowSum, colSum) {
const m = rowSum.length;
const n = colSum.length;
const ans = Array.from(new Array(m), () => new Array(n).fill(0));
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
const x = Math.min(rowSum[i], colSum[j]);
ans[i][j] = x;
rowSum[i] -= x;
colSum[j] -= x;
}
}
return ans;
};
|