树
广度优先搜索
二叉树
题目描述
给定一棵二叉树的根节点 root
和树中的一个节点 u
,返回与 u
所在层 中距离最近 的右侧 节点,当 u
是所在层中最右侧的节点,返回 null
。
示例 1:
输入: root = [1,2,3,null,4,5,6], u = 4
输出: 5
解释: 节点 4 所在层中,最近的右侧节点是节点 5。
示例 2:
输入: root = [3,null,4,2], u = 2
输出: null
解释: 2 的右侧没有节点。
示例 3:
输入: root = [1], u = 1
输出: null
示例 4:
输入: root = [3,4,2,null,null,null,1], u = 4
输出: 2
提示:
树中节点个数的范围是 [1, 105 ]
。
1 <= Node.val <= 105
树中所有节点的值是唯一 的。
u
是以 root
为根的二叉树的一个节点。
解法
方法一:BFS
我们可以使用广度优先搜索,从根节点开始搜索,当搜索到节点 $u$ 时,返回队列中的下一个节点。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点个数。
Python3 Java C++ Go JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def findNearestRightNode ( self , root : TreeNode , u : TreeNode ) -> Optional [ TreeNode ]:
q = deque ([ root ])
while q :
for i in range ( len ( q ) - 1 , - 1 , - 1 ):
root = q . popleft ()
if root == u :
return q [ 0 ] if i else None
if root . left :
q . append ( root . left )
if root . right :
q . append ( root . right )
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode findNearestRightNode ( TreeNode root , TreeNode u ) {
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
while ( ! q . isEmpty ()) {
for ( int i = q . size (); i > 0 ; -- i ) {
root = q . pollFirst ();
if ( root == u ) {
return i > 1 ? q . peekFirst () : null ;
}
if ( root . left != null ) {
q . offer ( root . left );
}
if ( root . right != null ) {
q . offer ( root . right );
}
}
}
return null ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * findNearestRightNode ( TreeNode * root , TreeNode * u ) {
queue < TreeNode *> q {{ root }};
while ( q . size ()) {
for ( int i = q . size (); i ; -- i ) {
root = q . front ();
q . pop ();
if ( root == u ) {
return i > 1 ? q . front () : nullptr ;
}
if ( root -> left ) {
q . push ( root -> left );
}
if ( root -> right ) {
q . push ( root -> right );
}
}
}
return nullptr ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func findNearestRightNode ( root * TreeNode , u * TreeNode ) * TreeNode {
q := [] * TreeNode { root }
for len ( q ) > 0 {
for i := len ( q ); i > 0 ; i -- {
root = q [ 0 ]
q = q [ 1 :]
if root == u {
if i > 1 {
return q [ 0 ]
}
return nil
}
if root . Left != nil {
q = append ( q , root . Left )
}
if root . Right != nil {
q = append ( q , root . Right )
}
}
}
return nil
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} u
* @return {TreeNode}
*/
var findNearestRightNode = function ( root , u ) {
const q = [ root ];
while ( q . length ) {
for ( let i = q . length ; i ; -- i ) {
root = q . shift ();
if ( root == u ) {
return i > 1 ? q [ 0 ] : null ;
}
if ( root . left ) {
q . push ( root . left );
}
if ( root . right ) {
q . push ( root . right );
}
}
}
return null ;
};
方法二:DFS
DFS 先序遍历二叉树,首次搜索到 $u$ 时,标记目前层数 $d$,下次遇到同一层的节点时,即为目标节点。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点个数。
Python3 Java C++ Go JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def findNearestRightNode ( self , root : TreeNode , u : TreeNode ) -> Optional [ TreeNode ]:
def dfs ( root , i ):
nonlocal d , ans
if root is None or ans :
return
if d == i :
ans = root
return
if root == u :
d = i
return
dfs ( root . left , i + 1 )
dfs ( root . right , i + 1 )
d = 0
ans = None
dfs ( root , 1 )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private TreeNode u ;
private TreeNode ans ;
private int d ;
public TreeNode findNearestRightNode ( TreeNode root , TreeNode u ) {
this . u = u ;
dfs ( root , 1 );
return ans ;
}
private void dfs ( TreeNode root , int i ) {
if ( root == null || ans != null ) {
return ;
}
if ( d == i ) {
ans = root ;
return ;
}
if ( root == u ) {
d = i ;
return ;
}
dfs ( root . left , i + 1 );
dfs ( root . right , i + 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * findNearestRightNode ( TreeNode * root , TreeNode * u ) {
TreeNode * ans ;
int d = 0 ;
function < void ( TreeNode * , int ) > dfs = [ & ]( TreeNode * root , int i ) {
if ( ! root || ans ) {
return ;
}
if ( d == i ) {
ans = root ;
return ;
}
if ( root == u ) {
d = i ;
return ;
}
dfs ( root -> left , i + 1 );
dfs ( root -> right , i + 1 );
};
dfs ( root , 1 );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func findNearestRightNode ( root * TreeNode , u * TreeNode ) * TreeNode {
d := 0
var ans * TreeNode
var dfs func ( * TreeNode , int )
dfs = func ( root * TreeNode , i int ) {
if root == nil || ans != nil {
return
}
if d == i {
ans = root
return
}
if root == u {
d = i
return
}
dfs ( root . Left , i + 1 )
dfs ( root . Right , i + 1 )
}
dfs ( root , 1 )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode} u
* @return {TreeNode}
*/
var findNearestRightNode = function ( root , u ) {
let d = 0 ;
let ans = null ;
function dfs ( root , i ) {
if ( ! root || ans ) {
return ;
}
if ( d == i ) {
ans = root ;
return ;
}
if ( root == u ) {
d = i ;
return ;
}
dfs ( root . left , i + 1 );
dfs ( root . right , i + 1 );
}
dfs ( root , 1 );
return ans ;
};
GitHub