1588. 所有奇数长度子数组的和
题目描述
给你一个正整数数组 arr
,请你计算所有可能的奇数长度子数组的和。
子数组 定义为原数组中的一个连续子序列。
请你返回 arr
中 所有奇数长度子数组的和 。
示例 1:
输入:arr = [1,4,2,5,3] 输出:58 解释:所有奇数长度子数组和它们的和为: [1] = 1 [4] = 4 [2] = 2 [5] = 5 [3] = 3 [1,4,2] = 7 [4,2,5] = 11 [2,5,3] = 10 [1,4,2,5,3] = 15 我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58
示例 2:
输入:arr = [1,2] 输出:3 解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3 。
示例 3:
输入:arr = [10,11,12] 输出:66
提示:
1 <= arr.length <= 100
1 <= arr[i] <= 1000
进阶:
你可以设计一个 O(n) 时间复杂度的算法解决此问题吗?
解法
方法一:枚举 + 前缀和
我们可以枚举子数组的起点 $i$ 和终点 $j$,其中 $i \leq j$,维护每个子数组的和,然后判断子数组的长度是否为奇数,如果是,则将子数组的和加入答案。
时间复杂度 $O(n^2)$,空间复杂度 $O(1)$。其中 $n$ 是数组的长度。
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|