题目描述
给定两个正整数数组 boxes
和 warehouse
,分别包含单位宽度的箱子的高度,以及仓库中n
个房间各自的高度。仓库的房间分别从0
到 n - 1
自左向右编号,warehouse[i]
(索引从 0 开始)是第 i
个房间的高度。
箱子放进仓库时遵循下列规则:
- 箱子不可叠放。
- 你可以重新调整箱子的顺序。
- 箱子可以从任意方向(左边或右边)推入仓库中。
- 如果仓库中某房间的高度小于某箱子的高度,则这个箱子和之后的箱子都会停在这个房间的前面。
你最多可以在仓库中放进多少个箱子?
示例 1:
输入: boxes = [1,2,2,3,4], warehouse = [3,4,1,2]
输出: 4
解释:
我们可以按如下顺序推入箱子:
1- 从左边或右边把黄色箱子推入2号房间;
2- 从右边把橙色箱子推入3号房间;
3- 从左边把绿色箱子推入1号房间;
4- 从左边把红色箱子推入0号房间;
还有其他方式推入4个箱子,比如交换红色与绿色箱子,或者交换红色与橙色箱子。
示例 2:
输入: boxes = [3,5,5,2], warehouse = [2,1,3,4,5]
输出: 3
解释:
因为只有一个高度大于等于5的房间,所以无法将两个高度为5的箱子都推入仓库。
还有其他方式推入箱子,比如将绿色箱子推入2号房间,或者在绿色及红色箱子之前将橙色箱子推入2号房间。
示例 3:
输入: boxes = [1,2,3], warehouse = [1,2,3,4]
输出: 3
示例 4:
输入: boxes = [4,5,6], warehouse = [3,3,3,3,3]
输出: 0
提示:
n == warehouse.length
1 <= boxes.length, warehouse.length <= 105
1 <= boxes[i], warehouse[i] <= 109
解法
方法一:预处理 + 排序 + 贪心
我们先对仓库进行预处理,得到每个房间的最大高度,然后对箱子和仓库进行排序,从最小的箱子开始,从最小的房间开始,如果当前房间的高度大于等于当前箱子的高度,则可以将当前箱子放入当前房间,否则继续寻找下一个房间。
最后返回可以放入的箱子数量。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为仓库的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def maxBoxesInWarehouse(self, boxes: List[int], warehouse: List[int]) -> int:
n = len(warehouse)
left = [0] * n
right = [0] * n
left[0] = right[-1] = inf
for i in range(1, n):
left[i] = min(left[i - 1], warehouse[i - 1])
for i in range(n - 2, -1, -1):
right[i] = min(right[i + 1], warehouse[i + 1])
for i in range(n):
warehouse[i] = min(warehouse[i], max(left[i], right[i]))
boxes.sort()
warehouse.sort()
ans = i = 0
for x in boxes:
while i < n and warehouse[i] < x:
i += 1
if i == n:
break
ans, i = ans + 1, i + 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public int maxBoxesInWarehouse(int[] boxes, int[] warehouse) {
int n = warehouse.length;
int[] left = new int[n];
int[] right = new int[n];
final int inf = 1 << 30;
left[0] = inf;
right[n - 1] = inf;
for (int i = 1; i < n; ++i) {
left[i] = Math.min(left[i - 1], warehouse[i - 1]);
}
for (int i = n - 2; i >= 0; --i) {
right[i] = Math.min(right[i + 1], warehouse[i + 1]);
}
for (int i = 0; i < n; ++i) {
warehouse[i] = Math.min(warehouse[i], Math.max(left[i], right[i]));
}
Arrays.sort(boxes);
Arrays.sort(warehouse);
int ans = 0, i = 0;
for (int x : boxes) {
while (i < n && warehouse[i] < x) {
++i;
}
if (i == n) {
break;
}
++ans;
++i;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public:
int maxBoxesInWarehouse(vector<int>& boxes, vector<int>& warehouse) {
int n = warehouse.size();
const int inf = 1 << 30;
vector<int> left(n, inf);
vector<int> right(n, inf);
for (int i = 1; i < n; ++i) {
left[i] = min(left[i - 1], warehouse[i - 1]);
}
for (int i = n - 2; ~i; --i) {
right[i] = min(right[i + 1], warehouse[i + 1]);
}
for (int i = 0; i < n; ++i) {
warehouse[i] = min(warehouse[i], max(left[i], right[i]));
}
sort(boxes.begin(), boxes.end());
sort(warehouse.begin(), warehouse.end());
int ans = 0;
int i = 0;
for (int x : boxes) {
while (i < n && warehouse[i] < x) {
++i;
}
if (i == n) {
break;
}
++ans;
++i;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func maxBoxesInWarehouse(boxes []int, warehouse []int) (ans int) {
n := len(warehouse)
left := make([]int, n)
right := make([]int, n)
const inf = 1 << 30
left[0] = inf
right[n-1] = inf
for i := 1; i < n; i++ {
left[i] = min(left[i-1], warehouse[i-1])
}
for i := n - 2; i >= 0; i-- {
right[i] = min(right[i+1], warehouse[i+1])
}
for i := 0; i < n; i++ {
warehouse[i] = min(warehouse[i], max(left[i], right[i]))
}
sort.Ints(boxes)
sort.Ints(warehouse)
i := 0
for _, x := range boxes {
for i < n && warehouse[i] < x {
i++
}
if i == n {
break
}
ans++
i++
}
return
}
|