153. 寻找旋转排序数组中的最小值
题目描述
已知一个长度为 n
的数组,预先按照升序排列,经由 1
到 n
次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。
给你一个元素值 互不相同 的数组 nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [3,4,5,1,2] 输出:1 解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入:nums = [4,5,6,7,0,1,2] 输出:0 解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。
示例 3:
输入:nums = [11,13,15,17] 输出:11 解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
提示:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
中的所有整数 互不相同nums
原来是一个升序排序的数组,并进行了1
至n
次旋转
解法
方法一:二分查找
初始,判断数组首尾元素的大小关系,若 nums[0] <= nums[n - 1]
条件成立,则说明当前数组已经是递增数组,最小值一定是数组第一个元素,提前返回 nums[0]
。
否则,进行二分判断。若 nums[0] <= nums[mid]
,说明 [left, mid]
范围内的元素构成递增数组,最小值一定在 mid
的右侧,否则说明 [mid + 1, right]
范围内的元素构成递增数组,最小值一定在 mid
的左侧。
除了 nums[0]
,也可以以 nums[right]
作为参照物,若 nums[mid] < nums[right]
成立,则最小值存在于 [left, mid]
范围当中,否则存在于 [mid + 1, right]
。
时间复杂度:$O(logN)$
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|