题目描述
矩形蛋糕的高度为 h
且宽度为 w
,给你两个整数数组 horizontalCuts
和 verticalCuts
,其中:
-
horizontalCuts[i]
是从矩形蛋糕顶部到第 i
个水平切口的距离
verticalCuts[j]
是从矩形蛋糕的左侧到第 j
个竖直切口的距离
请你按数组 horizontalCuts
和 verticalCuts
中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果 对 109 + 7
取余 后返回。
示例 1:
输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
输出:4
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。
示例 2:
输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
输出:6
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。
示例 3:
输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
输出:9
提示:
2 <= h, w <= 109
1 <= horizontalCuts.length <= min(h - 1, 105)
1 <= verticalCuts.length <= min(w - 1, 105)
1 <= horizontalCuts[i] < h
1 <= verticalCuts[i] < w
- 题目数据保证
horizontalCuts
中的所有元素各不相同
- 题目数据保证
verticalCuts
中的所有元素各不相同
解法
方法一:排序
我们先分别对 horizontalCuts
和 verticalCuts
排序,然后分别遍历两个数组,计算相邻两个元素的最大差值,分别记为 $x$ 和 $y$,最后返回 $x \times y$ 即可。
注意要考虑边界情况,即 horizontalCuts
和 verticalCuts
的首尾元素。
时间复杂度 $O(m\log m + n\log n)$,空间复杂度 $(\log m + \log n)$。其中 $m$ 和 $n$ 分别为 horizontalCuts
和 verticalCuts
的长度。
| class Solution:
def maxArea(
self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]
) -> int:
horizontalCuts.extend([0, h])
verticalCuts.extend([0, w])
horizontalCuts.sort()
verticalCuts.sort()
x = max(b - a for a, b in pairwise(horizontalCuts))
y = max(b - a for a, b in pairwise(verticalCuts))
return (x * y) % (10**9 + 7)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public int maxArea(int h, int w, int[] horizontalCuts, int[] verticalCuts) {
final int mod = (int) 1e9 + 7;
Arrays.sort(horizontalCuts);
Arrays.sort(verticalCuts);
int m = horizontalCuts.length;
int n = verticalCuts.length;
long x = Math.max(horizontalCuts[0], h - horizontalCuts[m - 1]);
long y = Math.max(verticalCuts[0], w - verticalCuts[n - 1]);
for (int i = 1; i < m; ++i) {
x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < n; ++i) {
y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
return (int) ((x * y) % mod);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
horizontalCuts.push_back(0);
horizontalCuts.push_back(h);
verticalCuts.push_back(0);
verticalCuts.push_back(w);
sort(horizontalCuts.begin(), horizontalCuts.end());
sort(verticalCuts.begin(), verticalCuts.end());
int x = 0, y = 0;
for (int i = 1; i < horizontalCuts.size(); ++i) {
x = max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (int i = 1; i < verticalCuts.size(); ++i) {
y = max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
const int mod = 1e9 + 7;
return (1ll * x * y) % mod;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | func maxArea(h int, w int, horizontalCuts []int, verticalCuts []int) int {
horizontalCuts = append(horizontalCuts, []int{0, h}...)
verticalCuts = append(verticalCuts, []int{0, w}...)
sort.Ints(horizontalCuts)
sort.Ints(verticalCuts)
x, y := 0, 0
const mod int = 1e9 + 7
for i := 1; i < len(horizontalCuts); i++ {
x = max(x, horizontalCuts[i]-horizontalCuts[i-1])
}
for i := 1; i < len(verticalCuts); i++ {
y = max(y, verticalCuts[i]-verticalCuts[i-1])
}
return (x * y) % mod
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function maxArea(h: number, w: number, horizontalCuts: number[], verticalCuts: number[]): number {
const mod = 1e9 + 7;
horizontalCuts.push(0, h);
verticalCuts.push(0, w);
horizontalCuts.sort((a, b) => a - b);
verticalCuts.sort((a, b) => a - b);
let [x, y] = [0, 0];
for (let i = 1; i < horizontalCuts.length; i++) {
x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
}
for (let i = 1; i < verticalCuts.length; i++) {
y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
}
return Number((BigInt(x) * BigInt(y)) % BigInt(mod));
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | impl Solution {
pub fn max_area(
h: i32,
w: i32,
mut horizontal_cuts: Vec<i32>,
mut vertical_cuts: Vec<i32>,
) -> i32 {
const MOD: i64 = 1_000_000_007;
horizontal_cuts.sort();
vertical_cuts.sort();
let m = horizontal_cuts.len();
let n = vertical_cuts.len();
let mut x = i64::max(
horizontal_cuts[0] as i64,
(h as i64) - (horizontal_cuts[m - 1] as i64),
);
let mut y = i64::max(
vertical_cuts[0] as i64,
(w as i64) - (vertical_cuts[n - 1] as i64),
);
for i in 1..m {
x = i64::max(
x,
(horizontal_cuts[i] as i64) - (horizontal_cuts[i - 1] as i64),
);
}
for i in 1..n {
y = i64::max(y, (vertical_cuts[i] as i64) - (vertical_cuts[i - 1] as i64));
}
((x * y) % MOD) as i32
}
}
|