跳转至

1465. 切割后面积最大的蛋糕

题目描述

矩形蛋糕的高度为 h 且宽度为 w,给你两个整数数组 horizontalCutsverticalCuts,其中:

  •  horizontalCuts[i] 是从矩形蛋糕顶部到第  i 个水平切口的距离
  • verticalCuts[j] 是从矩形蛋糕的左侧到第 j 个竖直切口的距离

请你按数组 horizontalCuts verticalCuts 中提供的水平和竖直位置切割后,请你找出 面积最大 的那份蛋糕,并返回其 面积 。由于答案可能是一个很大的数字,因此需要将结果  109 + 7 取余 后返回。

 

示例 1:

输入:h = 5, w = 4, horizontalCuts = [1,2,4], verticalCuts = [1,3]
输出:4 
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色的那份蛋糕面积最大。

示例 2:

输入:h = 5, w = 4, horizontalCuts = [3,1], verticalCuts = [1]
输出:6
解释:上图所示的矩阵蛋糕中,红色线表示水平和竖直方向上的切口。切割蛋糕后,绿色和黄色的两份蛋糕面积最大。

示例 3:

输入:h = 5, w = 4, horizontalCuts = [3], verticalCuts = [3]
输出:9

 

提示:

  • 2 <= h, w <= 109
  • 1 <= horizontalCuts.length <= min(h - 1, 105)
  • 1 <= verticalCuts.length <= min(w - 1, 105)
  • 1 <= horizontalCuts[i] < h
  • 1 <= verticalCuts[i] < w
  • 题目数据保证 horizontalCuts 中的所有元素各不相同
  • 题目数据保证 verticalCuts 中的所有元素各不相同

解法

方法一:排序

我们先分别对 horizontalCutsverticalCuts 排序,然后分别遍历两个数组,计算相邻两个元素的最大差值,分别记为 $x$ 和 $y$,最后返回 $x \times y$ 即可。

注意要考虑边界情况,即 horizontalCutsverticalCuts 的首尾元素。

时间复杂度 $O(m\log m + n\log n)$,空间复杂度 $(\log m + \log n)$。其中 $m$ 和 $n$ 分别为 horizontalCutsverticalCuts 的长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def maxArea(
        self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]
    ) -> int:
        horizontalCuts.extend([0, h])
        verticalCuts.extend([0, w])
        horizontalCuts.sort()
        verticalCuts.sort()
        x = max(b - a for a, b in pairwise(horizontalCuts))
        y = max(b - a for a, b in pairwise(verticalCuts))
        return (x * y) % (10**9 + 7)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
    public int maxArea(int h, int w, int[] horizontalCuts, int[] verticalCuts) {
        final int mod = (int) 1e9 + 7;
        Arrays.sort(horizontalCuts);
        Arrays.sort(verticalCuts);
        int m = horizontalCuts.length;
        int n = verticalCuts.length;
        long x = Math.max(horizontalCuts[0], h - horizontalCuts[m - 1]);
        long y = Math.max(verticalCuts[0], w - verticalCuts[n - 1]);
        for (int i = 1; i < m; ++i) {
            x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
        }
        for (int i = 1; i < n; ++i) {
            y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
        }
        return (int) ((x * y) % mod);
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int maxArea(int h, int w, vector<int>& horizontalCuts, vector<int>& verticalCuts) {
        horizontalCuts.push_back(0);
        horizontalCuts.push_back(h);
        verticalCuts.push_back(0);
        verticalCuts.push_back(w);
        sort(horizontalCuts.begin(), horizontalCuts.end());
        sort(verticalCuts.begin(), verticalCuts.end());
        int x = 0, y = 0;
        for (int i = 1; i < horizontalCuts.size(); ++i) {
            x = max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
        }
        for (int i = 1; i < verticalCuts.size(); ++i) {
            y = max(y, verticalCuts[i] - verticalCuts[i - 1]);
        }
        const int mod = 1e9 + 7;
        return (1ll * x * y) % mod;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
func maxArea(h int, w int, horizontalCuts []int, verticalCuts []int) int {
    horizontalCuts = append(horizontalCuts, []int{0, h}...)
    verticalCuts = append(verticalCuts, []int{0, w}...)
    sort.Ints(horizontalCuts)
    sort.Ints(verticalCuts)
    x, y := 0, 0
    const mod int = 1e9 + 7
    for i := 1; i < len(horizontalCuts); i++ {
        x = max(x, horizontalCuts[i]-horizontalCuts[i-1])
    }
    for i := 1; i < len(verticalCuts); i++ {
        y = max(y, verticalCuts[i]-verticalCuts[i-1])
    }
    return (x * y) % mod
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
function maxArea(h: number, w: number, horizontalCuts: number[], verticalCuts: number[]): number {
    const mod = 1e9 + 7;
    horizontalCuts.push(0, h);
    verticalCuts.push(0, w);
    horizontalCuts.sort((a, b) => a - b);
    verticalCuts.sort((a, b) => a - b);
    let [x, y] = [0, 0];
    for (let i = 1; i < horizontalCuts.length; i++) {
        x = Math.max(x, horizontalCuts[i] - horizontalCuts[i - 1]);
    }
    for (let i = 1; i < verticalCuts.length; i++) {
        y = Math.max(y, verticalCuts[i] - verticalCuts[i - 1]);
    }
    return Number((BigInt(x) * BigInt(y)) % BigInt(mod));
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
impl Solution {
    pub fn max_area(
        h: i32,
        w: i32,
        mut horizontal_cuts: Vec<i32>,
        mut vertical_cuts: Vec<i32>,
    ) -> i32 {
        const MOD: i64 = 1_000_000_007;

        horizontal_cuts.sort();
        vertical_cuts.sort();

        let m = horizontal_cuts.len();
        let n = vertical_cuts.len();

        let mut x = i64::max(
            horizontal_cuts[0] as i64,
            (h as i64) - (horizontal_cuts[m - 1] as i64),
        );
        let mut y = i64::max(
            vertical_cuts[0] as i64,
            (w as i64) - (vertical_cuts[n - 1] as i64),
        );

        for i in 1..m {
            x = i64::max(
                x,
                (horizontal_cuts[i] as i64) - (horizontal_cuts[i - 1] as i64),
            );
        }

        for i in 1..n {
            y = i64::max(y, (vertical_cuts[i] as i64) - (vertical_cuts[i - 1] as i64));
        }

        ((x * y) % MOD) as i32
    }
}

评论