题目描述
给你一个 rows x cols
的矩阵 grid
来表示一块樱桃地。 grid
中每个格子的数字表示你能获得的樱桃数目。
你有两个机器人帮你收集樱桃,机器人 1 从左上角格子 (0,0)
出发,机器人 2 从右上角格子 (0, cols-1)
出发。
请你按照如下规则,返回两个机器人能收集的最多樱桃数目:
- 从格子
(i,j)
出发,机器人可以移动到格子 (i+1, j-1)
,(i+1, j)
或者 (i+1, j+1)
。
- 当一个机器人经过某个格子时,它会把该格子内所有的樱桃都摘走,然后这个位置会变成空格子,即没有樱桃的格子。
- 当两个机器人同时到达同一个格子时,它们中只有一个可以摘到樱桃。
- 两个机器人在任意时刻都不能移动到
grid
外面。
- 两个机器人最后都要到达
grid
最底下一行。
示例 1:
输入:grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
输出:24
解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。
机器人 1 摘的樱桃数目为 (3 + 2 + 5 + 2) = 12 。
机器人 2 摘的樱桃数目为 (1 + 5 + 5 + 1) = 12 。
樱桃总数为: 12 + 12 = 24 。
示例 2:
输入:grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]]
输出:28
解释:机器人 1 和机器人 2 的路径在上图中分别用绿色和蓝色表示。
机器人 1 摘的樱桃数目为 (1 + 9 + 5 + 2) = 17 。
机器人 2 摘的樱桃数目为 (1 + 3 + 4 + 3) = 11 。
樱桃总数为: 17 + 11 = 28 。
示例 3:
输入:grid = [[1,0,0,3],[0,0,0,3],[0,0,3,3],[9,0,3,3]]
输出:22
示例 4:
输入:grid = [[1,1],[1,1]]
输出:4
提示:
rows == grid.length
cols == grid[i].length
2 <= rows, cols <= 70
0 <= grid[i][j] <= 100
解法
方法一:动态规划
我们定义 $f[i][j_1][j_2]$ 表示两个机器人分别在第 $i$ 行的位置 $j_1$ 和 $j_2$ 时能够摘到的最多樱桃数目。初始时 $f[0][0][n-1] = grid[0][0] + grid[0][n-1]$,其余值均为 $-1$。答案为 $\max_{0 \leq j_1, j_2 < n} f[m-1][j_1][j_2]$。
考虑 $f[i][j_1][j_2]$,如果 $j_1 \neq j_2$,那么机器人在第 $i$ 行能摘到的樱桃数目为 $grid[i][j_1] + grid[i][j_2]$;如果 $j_1 = j_2$,那么机器人在第 $i$ 行能摘到的樱桃数目为 $grid[i][j_1]$。我们可以枚举两个机器人的上一个状态 $f[i-1][y1][y2]$,其中 $y_1, y_2$ 分别是两个机器人在第 $i-1$ 行的位置,那么有 $y_1 \in {j_1-1, j_1, j_1+1}$ 且 $y_2 \in {j_2-1, j_2, j_2+1}$。状态转移方程如下:
$$
f[i][j_1][j_2] = \max_{y_1 \in {j_1-1, j_1, j_1+1}, y_2 \in {j_2-1, j_2, j_2+1}} f[i-1][y_1][y_2] + \begin{cases} grid[i][j_1] + grid[i][j_2], & j_1 \neq j_2 \ grid[i][j_1], & j_1 = j_2 \end{cases}
$$
其中 $f[i-1][y_1][y_2]$ 为 $-1$ 时需要忽略。
最终的答案即为 $\max_{0 \leq j_1, j_2 < n} f[m-1][j_1][j_2]$。
时间复杂度 $O(m \times n^2)$,空间复杂度 $O(m \times n^2)$。其中 $m$ 和 $n$ 分别是网格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = [[[-1] * n for _ in range(n)] for _ in range(m)]
f[0][0][n - 1] = grid[0][0] + grid[0][n - 1]
for i in range(1, m):
for j1 in range(n):
for j2 in range(n):
x = grid[i][j1] + (0 if j1 == j2 else grid[i][j2])
for y1 in range(j1 - 1, j1 + 2):
for y2 in range(j2 - 1, j2 + 2):
if 0 <= y1 < n and 0 <= y2 < n and f[i - 1][y1][y2] != -1:
f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x)
return max(f[-1][j1][j2] for j1, j2 in product(range(n), range(n)))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public int cherryPickup(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][][] f = new int[m][n][n];
for (var g : f) {
for (var h : g) {
Arrays.fill(h, -1);
}
}
f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) {
f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x);
}
}
}
}
}
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
ans = Math.max(ans, f[m - 1][j1][j2]);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int f[m][n][n];
memset(f, -1, sizeof(f));
f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] != -1) {
f[i][j1][j2] = max(f[i][j1][j2], f[i - 1][y1][y2] + x);
}
}
}
}
}
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
ans = max(ans, f[m - 1][j1][j2]);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | func cherryPickup(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
f := make([][][]int, m)
for i := range f {
f[i] = make([][]int, n)
for j := range f[i] {
f[i][j] = make([]int, n)
for k := range f[i][j] {
f[i][j][k] = -1
}
}
}
f[0][0][n-1] = grid[0][0] + grid[0][n-1]
for i := 1; i < m; i++ {
for j1 := 0; j1 < n; j1++ {
for j2 := 0; j2 < n; j2++ {
x := grid[i][j1]
if j1 != j2 {
x += grid[i][j2]
}
for y1 := j1 - 1; y1 <= j1+1; y1++ {
for y2 := j2 - 1; y2 <= j2+1; y2++ {
if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i-1][y1][y2] != -1 {
f[i][j1][j2] = max(f[i][j1][j2], f[i-1][y1][y2]+x)
}
}
}
}
}
}
for j1 := 0; j1 < n; j1++ {
ans = max(ans, slices.Max(f[m-1][j1]))
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | function cherryPickup(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const f = Array.from({ length: m }, () =>
Array.from({ length: n }, () => Array.from({ length: n }, () => -1)),
);
f[0][0][n - 1] = grid[0][0] + grid[0][n - 1];
for (let i = 1; i < m; ++i) {
for (let j1 = 0; j1 < n; ++j1) {
for (let j2 = 0; j2 < n; ++j2) {
const x = grid[i][j1] + (j1 === j2 ? 0 : grid[i][j2]);
for (let y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (let y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[i - 1][y1][y2] !== -1) {
f[i][j1][j2] = Math.max(f[i][j1][j2], f[i - 1][y1][y2] + x);
}
}
}
}
}
}
return Math.max(...f[m - 1].flat());
}
|
方法二:动态规划(空间优化)
注意到 $f[i][j_1][j_2]$ 的计算只和 $f[i-1][y_1][y_2]$ 有关,因此我们可以使用滚动数组优化空间复杂度,空间复杂度优化后的时间复杂度为 $O(n^2)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution:
def cherryPickup(self, grid: List[List[int]]) -> int:
m, n = len(grid), len(grid[0])
f = [[-1] * n for _ in range(n)]
g = [[-1] * n for _ in range(n)]
f[0][n - 1] = grid[0][0] + grid[0][n - 1]
for i in range(1, m):
for j1 in range(n):
for j2 in range(n):
x = grid[i][j1] + (0 if j1 == j2 else grid[i][j2])
for y1 in range(j1 - 1, j1 + 2):
for y2 in range(j2 - 1, j2 + 2):
if 0 <= y1 < n and 0 <= y2 < n and f[y1][y2] != -1:
g[j1][j2] = max(g[j1][j2], f[y1][y2] + x)
f, g = g, f
return max(f[j1][j2] for j1, j2 in product(range(n), range(n)))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
public int cherryPickup(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] f = new int[n][n];
int[][] g = new int[n][n];
for (int i = 0; i < n; ++i) {
Arrays.fill(f[i], -1);
Arrays.fill(g[i], -1);
}
f[0][n - 1] = grid[0][0] + grid[0][n - 1];
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1) {
g[j1][j2] = Math.max(g[j1][j2], f[y1][y2] + x);
}
}
}
}
}
int[][] t = f;
f = g;
g = t;
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
ans = Math.max(ans, f[j1][j2]);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
public:
int cherryPickup(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> f(n, vector<int>(n, -1));
vector<vector<int>> g(n, vector<int>(n, -1));
f[0][n - 1] = grid[0][0] + grid[0][n - 1];
for (int i = 1; i < m; ++i) {
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
int x = grid[i][j1] + (j1 == j2 ? 0 : grid[i][j2]);
for (int y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (int y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1) {
g[j1][j2] = max(g[j1][j2], f[y1][y2] + x);
}
}
}
}
}
swap(f, g);
}
int ans = 0;
for (int j1 = 0; j1 < n; ++j1) {
for (int j2 = 0; j2 < n; ++j2) {
ans = max(ans, f[j1][j2]);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | func cherryPickup(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
f := make([][]int, n)
g := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
g[i] = make([]int, n)
for j := range f[i] {
f[i][j] = -1
g[i][j] = -1
}
}
f[0][n-1] = grid[0][0] + grid[0][n-1]
for i := 1; i < m; i++ {
for j1 := 0; j1 < n; j1++ {
for j2 := 0; j2 < n; j2++ {
x := grid[i][j1]
if j1 != j2 {
x += grid[i][j2]
}
for y1 := j1 - 1; y1 <= j1+1; y1++ {
for y2 := j2 - 1; y2 <= j2+1; y2++ {
if y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] != -1 {
g[j1][j2] = max(g[j1][j2], f[y1][y2]+x)
}
}
}
}
}
f, g = g, f
}
for j1 := 0; j1 < n; j1++ {
ans = max(ans, slices.Max(f[j1]))
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | function cherryPickup(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
let f: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => -1));
let g: number[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => -1));
f[0][n - 1] = grid[0][0] + grid[0][n - 1];
for (let i = 1; i < m; ++i) {
for (let j1 = 0; j1 < n; ++j1) {
for (let j2 = 0; j2 < n; ++j2) {
const x = grid[i][j1] + (j1 === j2 ? 0 : grid[i][j2]);
for (let y1 = j1 - 1; y1 <= j1 + 1; ++y1) {
for (let y2 = j2 - 1; y2 <= j2 + 1; ++y2) {
if (y1 >= 0 && y1 < n && y2 >= 0 && y2 < n && f[y1][y2] !== -1) {
g[j1][j2] = Math.max(g[j1][j2], f[y1][y2] + x);
}
}
}
}
}
[f, g] = [g, f];
}
return Math.max(...f.flat());
}
|