跳转至

1453. 圆形靶内的最大飞镖数量

题目描述

Alice 向一面非常大的墙上掷出 n 支飞镖。给你一个数组 darts ,其中 darts[i] = [xi, yi] 表示 Alice 掷出的第 i 支飞镖落在墙上的位置。

Bob 知道墙上所有 n 支飞镖的位置。他想要往墙上放置一个半径为 r 的圆形靶。使 Alice 掷出的飞镖尽可能多地落在靶上。

给你整数 r ,请返回能够落在 任意 半径为 r 的圆形靶内或靶上的最大飞镖数。

 

示例 1 :

输入:darts = [[-2,0],[2,0],[0,2],[0,-2]], r = 2
输出:4
解释:如果圆形靶的圆心为 (0,0) ,半径为 2 ,所有的飞镖都落在靶上,此时落在靶上的飞镖数最大,值为 4 。

示例 2 :

输入:darts = [[-3,0],[3,0],[2,6],[5,4],[0,9],[7,8]], r = 5
输出:5
解释:如果圆形靶的圆心为 (0,4) ,半径为 5 ,则除了 (7,8) 之外的飞镖都落在靶上,此时落在靶上的飞镖数最大,值为 5 。

 

提示:

  • 1 <= darts.length <= 100
  • darts[i].length == 2
  • -104 <= xi, yi <= 104
  • darts 中的元素互不相同
  • 1 <= r <= 5000

解法

方法一

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution:
    def numPoints(self, darts: list[list[int]], r: int) -> int:
        def countDarts(x, y):
            count = 0
            for x1, y1 in darts:
                if dist((x, y), (x1, y1)) <= r + 1e-7:
                    count += 1
            return count

        def possibleCenters(x1, y1, x2, y2):
            dx, dy = x2 - x1, y2 - y1
            d = sqrt(dx * dx + dy * dy)
            if d > 2 * r:
                return []
            mid_x, mid_y = (x1 + x2) / 2, (y1 + y2) / 2
            dist_to_center = sqrt(r * r - (d / 2) * (d / 2))
            offset_x = dist_to_center * dy / d
            offset_y = dist_to_center * -dx / d
            return [
                (mid_x + offset_x, mid_y + offset_y),
                (mid_x - offset_x, mid_y - offset_y),
            ]

        n = len(darts)
        max_darts = 1

        for i in range(n):
            for j in range(i + 1, n):
                centers = possibleCenters(
                    darts[i][0], darts[i][1], darts[j][0], darts[j][1]
                )
                for center in centers:
                    max_darts = max(max_darts, countDarts(center[0], center[1]))

        return max_darts
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
    public int numPoints(int[][] darts, int r) {
        int n = darts.length;
        int maxDarts = 1;

        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                List<double[]> centers
                    = possibleCenters(darts[i][0], darts[i][1], darts[j][0], darts[j][1], r);
                for (double[] center : centers) {
                    maxDarts = Math.max(maxDarts, countDarts(center[0], center[1], darts, r));
                }
            }
        }
        return maxDarts;
    }

    private List<double[]> possibleCenters(int x1, int y1, int x2, int y2, int r) {
        List<double[]> centers = new ArrayList<>();
        double dx = x2 - x1;
        double dy = y2 - y1;
        double d = Math.sqrt(dx * dx + dy * dy);
        if (d > 2 * r) {
            return centers;
        }
        double midX = (x1 + x2) / 2.0;
        double midY = (y1 + y2) / 2.0;
        double distToCenter = Math.sqrt(r * r - (d / 2.0) * (d / 2.0));
        double offsetX = distToCenter * dy / d;
        double offsetY = distToCenter * -dx / d;

        centers.add(new double[] {midX + offsetX, midY + offsetY});
        centers.add(new double[] {midX - offsetX, midY - offsetY});
        return centers;
    }

    private int countDarts(double x, double y, int[][] darts, int r) {
        int count = 0;
        for (int[] dart : darts) {
            if (Math.sqrt(Math.pow(dart[0] - x, 2) + Math.pow(dart[1] - y, 2)) <= r + 1e-7) {
                count++;
            }
        }
        return count;
    }
}
1

1

评论